Regularity properties of open tangent cones

Author(s):  
Bernard Cornet

Author(s):  
Charles L. Epstein ◽  
Rafe Mazzeo

This book provides the mathematical foundations for the analysis of a class of degenerate elliptic operators defined on manifolds with corners, which arise in a variety of applications such as population genetics, mathematical finance, and economics. The results discussed in this book prove the uniqueness of the solution to the martingale problem and therefore the existence of the associated Markov process. The book uses an “integral kernel method” to develop mathematical foundations for the study of such degenerate elliptic operators and the stochastic processes they define. The precise nature of the degeneracies of the principal symbol for these operators leads to solutions of the parabolic and elliptic problems that display novel regularity properties. Dually, the adjoint operator allows for rather dramatic singularities, such as measures supported on high codimensional strata of the boundary. The book establishes the uniqueness, existence, and sharp regularity properties for solutions to the homogeneous and inhomogeneous heat equations, as well as a complete analysis of the resolvent operator acting on Hölder spaces. It shows that the semigroups defined by these operators have holomorphic extensions to the right half plane. The book also demonstrates precise asymptotic results for the long-time behavior of solutions to both the forward and backward Kolmogorov equations.





2017 ◽  
Vol 4 (1) ◽  
pp. 43-72 ◽  
Author(s):  
Martin de Borbon

Abstract The goal of this article is to provide a construction and classification, in the case of two complex dimensions, of the possible tangent cones at points of limit spaces of non-collapsed sequences of Kähler-Einstein metrics with cone singularities. The proofs and constructions are completely elementary, nevertheless they have an intrinsic beauty. In a few words; tangent cones correspond to spherical metrics with cone singularities in the projective line by means of the Kähler quotient construction with respect to the S1-action generated by the Reeb vector field, except in the irregular case ℂβ₁×ℂβ₂ with β₂/ β₁ ∉ Q.



2020 ◽  
Vol 23 (6) ◽  
pp. 1570-1604
Author(s):  
Teodor Atanacković ◽  
Stevan Pilipović ◽  
Dora Seleši

Abstract Equations of motion for a Zener model describing a viscoelastic rod are investigated and conditions ensuring the existence, uniqueness and regularity properties of solutions are obtained. Restrictions on the coefficients in the constitutive equation are determined by a weak form of the dissipation inequality. Various stochastic processes related to the Karhunen-Loéve expansion theorem are presented as a model for random perturbances. Results show that displacement disturbances propagate with an infinite speed. Some corrections of already published results for a non-stochastic model are also provided.





2017 ◽  
Vol 17 (4) ◽  
pp. 661-678 ◽  
Author(s):  
Harbir Antil ◽  
Sören Bartels

AbstractFractional differential operators provide an attractive mathematical tool to model effects with limited regularity properties. Particular examples are image processing and phase field models in which jumps across lower dimensional subsets and sharp transitions across interfaces are of interest. The numerical solution of corresponding model problems via a spectral method is analyzed. Its efficiency and features of the model problems are illustrated by numerical experiments.



2008 ◽  
Vol 36 (8) ◽  
pp. 2969-2978 ◽  
Author(s):  
Alessandro De Paris ◽  
Ferruccio Orecchia


2010 ◽  
Vol 22 (2) ◽  
pp. 583-602 ◽  
Author(s):  
G. Arena ◽  
A. O. Caruso ◽  
R. Monti


Sign in / Sign up

Export Citation Format

Share Document