scholarly journals Quasinormal modes and dispersion relations for quarkonium in a plasma

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Nelson R. F. Braga ◽  
Luiz F. Ferreira
2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Aron Jansen ◽  
Christiana Pantelidou

Abstract We investigate the convergence of relativistic hydrodynamics in charged fluids, within the framework of holography. On the one hand, we consider the analyticity properties of the dispersion relations of the hydrodynamic modes on the complex frequency and momentum plane and on the other hand, we perform a perturbative expansion of the dispersion relations in small momenta to a very high order. We see that the locations of the branch points extracted using the first approach are in good quantitative agreement with the radius of convergence extracted perturbatively. We see that for different values of the charge, different types of pole collisions set the radius of convergence. The latter turns out to be finite in the neutral case for all hydrodynamic modes, while it goes to zero at extremality for the shear and sound modes. Furthermore, we also establish the phenomenon of pole-skipping for the Reissner-Nordström black hole, and we find that the value of the momentum for which this phenomenon occurs need not be within the radius of convergence of hydrodynamics.


2020 ◽  
Vol 101 (10) ◽  
Author(s):  
Ramin G. Daghigh ◽  
Michael D. Green ◽  
Jodin C. Morey
Keyword(s):  

2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Almendra Aragón ◽  
Ramón Bécar ◽  
P. A. González ◽  
Yerko Vásquez

2021 ◽  
Vol 103 (12) ◽  
Author(s):  
Jamie Bamber ◽  
Oliver J. Tattersall ◽  
Katy Clough ◽  
Pedro G. Ferreira

2020 ◽  
Vol 102 (21) ◽  
Author(s):  
Yoichi Shiota ◽  
Ryusuke Hisatomi ◽  
Takahiro Moriyama ◽  
Teruo Ono

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Navid Abbasi ◽  
Matthias Kaminski

Abstract We consider a holographic thermal state and perturb it by a scalar operator whose associated real-time Green’s function has only gapped poles. These gapped poles correspond to the non-hydrodynamic quasinormal modes of a massive scalar perturbation around a Schwarzschild black brane. Relations between pole-skipping points, critical points and quasinormal modes in general emerge when the mass of the scalar and hence the dual operator dimension is varied. First, this novel analysis reveals a relation between the location of a mode in the infinite tower of quasinormal modes and the number of pole-skipping points constraining its dispersion relation at imaginary momenta. Second, for the first time, we consider the radii of convergence of the derivative expansions about the gapped quasinormal modes. These convergence radii turn out to be bounded from above by the set of all pole-skipping points. Furthermore, a transition between two distinct classes of critical points occurs at a particular value for the conformal dimension, implying close relations between critical points and pole-skipping points in one of those two classes. We show numerically that all of our results are also true for gapped modes of vector and tensor operators.


Sign in / Sign up

Export Citation Format

Share Document