scholarly journals The holographic c-theorem and infinite-dimensional Lie algebras

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Eric A. Bergshoeff ◽  
Mehmet Ozkan ◽  
Mustafa Salih Zöğ

Abstract We discuss a non-dynamical theory of gravity in three dimensions which is based on an infinite-dimensional Lie algebra that is closely related to an infinite-dimensional extended AdS algebra. We find an intriguing connection between on the one hand higher-derivative gravity theories that are consistent with the holographic c-theorem and on the other hand truncations of this infinite-dimensional Lie algebra that violate the Lie algebra structure. We show that in three dimensions different truncations reproduce, up to terms that do not contribute to the c-theorem, Chern-Simons-like gravity models describing extended 3D massive gravity theories. Performing the same procedure with similar truncations in dimensions larger than or equal to four reproduces higher derivative gravity models that are known in the literature to be consistent with the c-theorem but do not have an obvious connection to massive gravity like in three dimensions.

Author(s):  
John Howie ◽  
Steven Duplij ◽  
Ali Mostafazadeh ◽  
Masaki Yasue ◽  
Vladimir Ivashchuk ◽  
...  

2002 ◽  
Vol 17 (08) ◽  
pp. 481-489 ◽  
Author(s):  
A. AGARWAL ◽  
S. G. RAJEEV

The equations of motion of quantum Yang–Mills theory (in the planar "large-N" limit), when formulated in loop-space are shown to have an anomalous term, which makes them analogous to the equations of motion of WZW models. The anomaly is the Jacobian of the change of variables from the usual ones, i.e. the connection one-form A, to the holonomy U. An infinite-dimensional Lie algebra related to this change of variables (the Lie algebra of loop substitutions) is developed, and the anomaly is interpreted as an element of the first cohomology of this Lie algebra. The Migdal–Makeenko equations are shown to be the condition for the invariance of the Yang–Mills generating functional Z under the action of the generators of this Lie algebra. Connections of this formalism to the collective field approach of Jevicki and Sakita are also discussed.


2017 ◽  
Vol 14 (11) ◽  
pp. 1750160 ◽  
Author(s):  
Viktor Abramov

Given a matrix Lie algebra one can construct the 3-Lie algebra by means of the trace of a matrix. In the present paper, we show that this approach can be extended to the infinite-dimensional Lie algebra of vector fields on a manifold if instead of the trace of a matrix we consider a differential 1-form which satisfies certain conditions. Then we show that the same approach can be extended to matrix Lie superalgebras [Formula: see text] if instead of the trace of a matrix we make use of the supertrace of a matrix. It is proved that a graded triple commutator of matrices constructed with the help of the graded commutator and the supertrace satisfies a graded ternary Filippov–Jacobi identity. In two particular cases of [Formula: see text] and [Formula: see text], we show that the Pauli and Dirac matrices generate the matrix 3-Lie superalgebras, and we find the non-trivial graded triple commutators of these algebras. We propose a Clifford algebra approach to 3-Lie superalgebras induced by Lie superalgebras. We also discuss an application of matrix 3-Lie superalgebras in BRST-formalism.


2010 ◽  
Vol 24 (10) ◽  
pp. 1033-1042 ◽  
Author(s):  
XIAN-LONG SUN ◽  
DA-JUN ZHANG ◽  
XIAO-YING ZHU ◽  
DENG-YUAN CHEN

By introducing suitable non-isospectral flows, we construct two sets of symmetries for the isospectral differential–difference Kadomstev–Petviashvili hierarchy. The symmetries form an infinite dimensional Lie algebra.


Sign in / Sign up

Export Citation Format

Share Document