scholarly journals Entanglement on linked boundaries in Chern-Simons theory with generic gauge groups

2018 ◽  
Vol 2018 (2) ◽  
Author(s):  
Siddharth Dwivedi ◽  
Vivek Kumar Singh ◽  
Saswati Dhara ◽  
P. Ramadevi ◽  
Yang Zhou ◽  
...  
2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Nikolay Bobev ◽  
Anthony M. Charles ◽  
Dongmin Gang ◽  
Kiril Hristov ◽  
Valentin Reys

Abstract We study the interplay between four-derivative 4d gauged supergravity, holography, wrapped M5-branes, and theories of class $$ \mathrm{\mathcal{R}} $$ ℛ . Using results from Chern-Simons theory on hyperbolic three-manifolds and the 3d-3d correspondence we are able to constrain the two independent coefficients in the four-derivative supergravity Lagrangian. This in turn allows us to calculate the subleading terms in the large-N expansion of supersymmetric partition functions for an infinite class of three-dimensional $$ \mathcal{N} $$ N = 2 SCFTs of class $$ \mathrm{\mathcal{R}} $$ ℛ . We also determine the leading correction to the Bekenstein-Hawking entropy of asymptotically AdS4 black holes arising from wrapped M5-branes. In addition, we propose and test some conjectures about the perturbative partition function of Chern-Simons theory with complexified ADE gauge groups on closed hyperbolic three-manifolds.


1995 ◽  
Vol 10 (22) ◽  
pp. 1635-1658 ◽  
Author(s):  
P. RAMADEVI ◽  
T.R. GOVINDARAJAN ◽  
R.K. KAUL

We show that any of the new knot invariants obtained from Chern-Simons theory based on an arbitrary non-Abelian gauge group do not distinguish isotopically inequivalent mutant knots and links. In an attempt to distinguish these knots and links, we study Murakami (symmetrized version) r-strand composite braids. Salient features of the theory of such composite braids are presented. Representations of generators for these braids are obtained by exploiting properties of Hilbert spaces associated with the correlators of Wess-Zumino conformal field theories. The r-composite invariants for the knots are given by the sum of elementary Chern-Simons invariants associated with the irreducible representations in the product of r representations (allowed by the fusion rules of the corresponding Wess-Zumino conformal field theory) placed on r individual strands of the composite braid. On the other hand, composite invariants for links are given by a weighted sum of elementary multicolored Chern-Simons invariants. Some mutant links can be distinguished through the composite invariants, but mutant knots do not share this property. The results, though developed in detail within the framework of SU(2) Chern-Simons theory are valid for any other non-Abelian gauge groups.


2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Clay Cordova ◽  
Po-Shen Hsin ◽  
Nathan Seiberg

We study three-dimensional gauge theories based on orthogonal groups. Depending on the global form of the group these theories admit discrete \thetaθ-parameters, which control the weights in the sum over topologically distinct gauge bundles. We derive level-rank duality for these topological field theories. Our results may also be viewed as level-rank duality for SO(N)_{K}SO(N)K Chern-Simons theory in the presence of background fields for discrete global symmetries. In particular, we include the required counterterms and analysis of the anomalies. We couple our theories to charged matter and determine how these counterterms are shifted by integrating out massive fermions. By gauging discrete global symmetries we derive new boson-fermion dualities for vector matter, and present the phase diagram of theories with two-index tensor fermions, thus extending previous results for SO(N)SO(N) to other global forms of the gauge group.


2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
Siddharth Dwivedi ◽  
Andrea Addazi ◽  
Yang Zhou ◽  
Puneet Sharma

1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-223-Pr10-225
Author(s):  
S. Scheidl ◽  
B. Rosenow

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Suting Zhao ◽  
Christian Northe ◽  
René Meyer

Abstract We consider symmetry-resolved entanglement entropy in AdS3/CFT2 coupled to U(1) Chern-Simons theory. We identify the holographic dual of the charged moments in the two-dimensional conformal field theory as a charged Wilson line in the bulk of AdS3, namely the Ryu-Takayanagi geodesic minimally coupled to the U(1) Chern-Simons gauge field. We identify the holonomy around the Wilson line as the Aharonov-Bohm phases which, in the two-dimensional field theory, are generated by charged U(1) vertex operators inserted at the endpoints of the entangling interval. Furthermore, we devise a new method to calculate the symmetry resolved entanglement entropy by relating the generating function for the charged moments to the amount of charge in the entangling subregion. We calculate the subregion charge from the U(1) Chern-Simons gauge field sourced by the bulk Wilson line. We use our method to derive the symmetry-resolved entanglement entropy for Poincaré patch and global AdS3, as well as for the conical defect geometries. In all three cases, the symmetry resolved entanglement entropy is determined by the length of the Ryu-Takayanagi geodesic and the Chern-Simons level k, and fulfills equipartition of entanglement. The asymptotic symmetry algebra of the bulk theory is of $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody type. Employing the $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry, we confirm our holographic results by a calculation in the dual conformal field theory.


1995 ◽  
Vol 73 (5-6) ◽  
pp. 344-348 ◽  
Author(s):  
Yeong-Chuan Kao ◽  
Hsiang-Nan Li

We show that the two-loop contribution to the coefficient of the Chern–Simons term in the effective action of the Yang–Mills–Chern–Simons theory is infrared finite in the background field Landau gauge. We also discuss the difficulties in verifying the conjecture, due to topological considerations, that there are no more quantum corrections to the Chern–Simons term other than the well-known one-loop shift of the coefficient.


1993 ◽  
Vol 48 (4) ◽  
pp. 1808-1820 ◽  
Author(s):  
Mark Burgess ◽  
David J. Toms ◽  
Nils Tveten

Sign in / Sign up

Export Citation Format

Share Document