scholarly journals Constraints on a massive double-copy and applications to massive gravity

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Laura A. Johnson ◽  
Callum R. T. Jones ◽  
Shruti Paranjape

Abstract We propose and study a BCJ double-copy of massive particles, showing that it is equivalent to a KLT formula with a kernel given by the inverse of a matrix of massive bi-adjoint scalar amplitudes. For models with a uniform non-zero mass spectrum we demonstrate that the resulting double-copy factors on physical poles and that up to at least 5-particle scattering, color-kinematics duality satisfying numerators always exist. For the scattering of 5 or more particles, the procedure generically introduces spurious singularities that must be cancelled by imposing additional constraints. When massive particles are present, color-kinematics duality is not enough to guarantee a physical double-copy. As an example, we apply the formalism to massive Yang-Mills and show that up to 4-particle scattering the double-copy construction generates physical amplitudes of a model of dRGT massive gravity coupled to a dilaton and a two-form with dilaton parity violating couplings. We show that the spurious singularities in the 5-particle double-copy do not cancel in this example, and the construction fails to generate physically sensible amplitudes. We conjecture sufficient constraints on the mass spectrum, which in addition to massive BCJ relations, guarantee the absence of spurious singularities.

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Arshia Momeni ◽  
Justinas Rumbutis ◽  
Andrew J. Tolley

Abstract We consider the double copy of massive Yang-Mills theory in four dimensions, whose decoupling limit is a nonlinear sigma model. The latter may be regarded as the leading terms in the low energy effective theory of a heavy Higgs model, in which the Higgs has been integrated out. The obtained double copy effective field theory contains a massive spin-2, massive spin-1 and a massive spin-0 field, and we construct explicitly its interacting Lagrangian up to fourth order in fields. We find that up to this order, the spin-2 self interactions match those of the dRGT massive gravity theory, and that all the interactions are consistent with a Λ3 = (m2MPl)1/3 cutoff. We construct explicitly the Λ3 decoupling limit of this theory and show that it is equivalent to a bi-Galileon extension of the standard Λ3 massive gravity decoupling limit theory. Although it is known that the double copy of a nonlinear sigma model is a special Galileon, the decoupling limit of massive Yang-Mills theory is a more general Galileon theory. This demonstrates that the decoupling limit and double copy procedures do not commute and we clarify why this is the case in terms of the scaling of their kinematic factors.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Mariana Carrillo González ◽  
Arshia Momeni ◽  
Justinas Rumbutis

Abstract Recent explorations on how to construct a double copy of massive gauge fields have shown that, while any amplitude can be written in a form consistent with colour-kinematics duality, the double copy is generically unphysical. In this paper, we explore a new direction in which we can obtain a sensible double copy of massive gauge fields due to the special kinematics in three-dimensional spacetimes. To avoid the appearance of spurious poles at 5-points, we only require that the scattering amplitudes satisfy one BCJ relation. We show that the amplitudes of Topologically Massive Yang-Mills satisfy this relation and that their double copy at three, four, and five-points is Topologically Massive Gravity.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Leonardo de la Cruz ◽  
Ben Maybee ◽  
Donal O’Connell ◽  
Alasdair Ross

Abstract The double copy suggests that the basis of the dynamics of general relativity is Yang-Mills theory. Motivated by the importance of the relativistic two-body problem, we study the classical dynamics of colour-charged particle scattering from the perspective of amplitudes, rather than equations of motion. We explain how to compute the change of colour, and the radiation of colour, during a classical collision. We apply our formalism at next-to-leading order for the colour change and at leading order for colour radiation.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Kirill Krasnov ◽  
Evgeny Skvortsov

Abstract We construct a new covariant action for “flat” self-dual gravity in four space-time dimensions. The action has just one term, but when expanded around an appropriate background gives rise to a kinetic term and a cubic interaction. Upon imposing the light-cone gauge, the action reproduces the expected chiral interaction of Siegel. The new action is in many ways analogous to the known covariant action for self-dual Yang-Mills theory. There is also a sense in which the new self-dual gravity action exhibits the double copy of self-dual Yang-Mills structure.


2017 ◽  
Vol 2017 (7) ◽  
Author(s):  
Marco Chiodaroli ◽  
Murat Günaydin ◽  
Henrik Johansson ◽  
Radu Roiban

1992 ◽  
Vol 07 (11) ◽  
pp. 2469-2485
Author(s):  
A. C. CADAVID ◽  
R. J. FINKELSTEIN

An affine field theory may be constructed by gauging an affine algebra. The momentum integrals of the affine N = 4 Yang–Mills theory are ultraviolet finite but diverge because the sum over states is infinite. If the affine symmetry is broken by postulating a nonvanishing vacuum expectation value for that component of the scalar field lying in the L0 direction, then the theory acquires a linear mass spectrum. This broken theory is ultraviolet finite too, but the mass spectrum is unbounded. If it is also postulated that the mass spectrum has an upper bound (say, the Planck mass), then the resulting theory appears to be altogether finite. The influence of the exotic states has been estimated and, according to the proposed scenario, is negligible below energies at which gravitational interactions become important. The final effective theory has the symmetry of a compact Lie algebra augmented by the operator L0.


2010 ◽  
Vol 25 (26) ◽  
pp. 4911-4932
Author(s):  
ROLANDO GAITAN DEVERAS

A perturbative regime based on contortion as a dynamical variable and metric as a (classical) fixed background, is performed in the context of a pure Yang–Mills formulation for gravity in a (2+1)-dimensional space–time. In the massless case, we show that the theory contains three degrees of freedom and only one is a nonunitary mode. Next, we introduce quadratical terms dependent on torsion, which preserve parity and general covariance. The linearized version reproduces an analogue Hilbert–Einstein–Fierz–Pauli unitary massive theory plus three massless modes, two of them represents nonunitary ones. Finally, we confirm the existence of a family of unitary Yang–Mills-extended theories which are classically consistent with Einstein's solutions coming from nonmassive and topologically massive gravity. The unitarity of these Yang–Mills-extended theories is shown in a perturbative regime. A possible way to perform a nonperturbative study is remarked.


1978 ◽  
Vol 47 (4) ◽  
pp. 555-555 ◽  
Author(s):  
G. Curci ◽  
R. Ferrari
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document