scholarly journals Massive double copy in three spacetime dimensions

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Mariana Carrillo González ◽  
Arshia Momeni ◽  
Justinas Rumbutis

Abstract Recent explorations on how to construct a double copy of massive gauge fields have shown that, while any amplitude can be written in a form consistent with colour-kinematics duality, the double copy is generically unphysical. In this paper, we explore a new direction in which we can obtain a sensible double copy of massive gauge fields due to the special kinematics in three-dimensional spacetimes. To avoid the appearance of spurious poles at 5-points, we only require that the scattering amplitudes satisfy one BCJ relation. We show that the amplitudes of Topologically Massive Yang-Mills satisfy this relation and that their double copy at three, four, and five-points is Topologically Massive Gravity.

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Nathan Moynihan

Abstract Using the principles of the modern scattering amplitudes programme, we develop a formalism for constructing the amplitudes of three-dimensional topologically massive gauge theories and gravity. Inspired by recent developments in four dimensions, we construct the three-dimensional equivalent of x-variables, first defined in [1], for conserved matter currents coupled to topologically massive gauge bosons or gravitons. Using these, we bootstrap various matter-coupled gauge-theory and gravitational scattering amplitudes, and conjecture that topologically massive gauge theory and topologically massive gravity are related by the double copy. To motivate this idea further, we show explicitly that the Landau gauge propagator on the gauge theory side double copies to the de Donder gauge propagator on the gravity side.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Arshia Momeni ◽  
Justinas Rumbutis ◽  
Andrew J. Tolley

Abstract We consider the double copy of massive Yang-Mills theory in four dimensions, whose decoupling limit is a nonlinear sigma model. The latter may be regarded as the leading terms in the low energy effective theory of a heavy Higgs model, in which the Higgs has been integrated out. The obtained double copy effective field theory contains a massive spin-2, massive spin-1 and a massive spin-0 field, and we construct explicitly its interacting Lagrangian up to fourth order in fields. We find that up to this order, the spin-2 self interactions match those of the dRGT massive gravity theory, and that all the interactions are consistent with a Λ3 = (m2MPl)1/3 cutoff. We construct explicitly the Λ3 decoupling limit of this theory and show that it is equivalent to a bi-Galileon extension of the standard Λ3 massive gravity decoupling limit theory. Although it is known that the double copy of a nonlinear sigma model is a special Galileon, the decoupling limit of massive Yang-Mills theory is a more general Galileon theory. This demonstrates that the decoupling limit and double copy procedures do not commute and we clarify why this is the case in terms of the scaling of their kinematic factors.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Stéphane Detournay ◽  
Wout Merbis ◽  
Gim Seng Ng ◽  
Raphaela Wutte

Abstract We study warped flat geometries in three-dimensional topologically massive gravity. They are quotients of global warped flat spacetime, whose isometries are given by the 2-dimensional centrally extended Poincaré algebra. The latter can be obtained as a certain scaling limit of Warped AdS3 space with a positive cosmological constant. We discuss the causal structure of the resulting spacetimes using projection diagrams. We study their charges and thermodynamics, together with asymptotic Killing vectors preserving a consistent set of boundary conditions including them. The asymptotic symmetry group is given by a Warped CFT algebra, with a vanishing current level. A generalization of the derivation of the Warped CFT Cardy formula applies in this case, reproducing the entropy of the warped flat cosmological spacetimes.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
H. Adami ◽  
M.M. Sheikh-Jabbari ◽  
V. Taghiloo ◽  
H. Yavartanoo ◽  
C. Zwikel

Abstract We study surface charges on a generic null boundary in three dimensional topological massive gravity (TMG). We construct the solution phase space which involves four independent functions over the two dimensional null boundary. One of these functions corresponds to the massive chiral propagating graviton mode of TMG. The other three correspond to three surface charges of the theory, two of which can always be made integrable, while the last one can become integrable only in the absence of the chiral massive graviton flux through the null boundary. As the null boundary symmetry algebra we obtain Heisenberg ⊕ Virasoro algebra with a central charge proportional to the gravitational Chern-Simons term of TMG. We also discuss that the flux of the chiral massive gravitons appears as the (Bondi) news through the null surface.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Laura A. Johnson ◽  
Callum R. T. Jones ◽  
Shruti Paranjape

Abstract We propose and study a BCJ double-copy of massive particles, showing that it is equivalent to a KLT formula with a kernel given by the inverse of a matrix of massive bi-adjoint scalar amplitudes. For models with a uniform non-zero mass spectrum we demonstrate that the resulting double-copy factors on physical poles and that up to at least 5-particle scattering, color-kinematics duality satisfying numerators always exist. For the scattering of 5 or more particles, the procedure generically introduces spurious singularities that must be cancelled by imposing additional constraints. When massive particles are present, color-kinematics duality is not enough to guarantee a physical double-copy. As an example, we apply the formalism to massive Yang-Mills and show that up to 4-particle scattering the double-copy construction generates physical amplitudes of a model of dRGT massive gravity coupled to a dilaton and a two-form with dilaton parity violating couplings. We show that the spurious singularities in the 5-particle double-copy do not cancel in this example, and the construction fails to generate physically sensible amplitudes. We conjecture sufficient constraints on the mass spectrum, which in addition to massive BCJ relations, guarantee the absence of spurious singularities.


Author(s):  
M. N. Boldyreva ◽  
A. A. Magazev ◽  
I. V. Shirokov

In the paper, we investigate the gauge fields that are characterized by the existence of non-trivial integrals of motion for the Wong equations. For the gauge group 𝑆𝑈(2), the class of fields admitting only the isospin first integrals is described in detail. All gauge non-equivalent Yang–Mills fields admitting a linear integral of motion for the Wong equations are classified in the three-dimensional Euclidean space


2020 ◽  
Vol 35 (11) ◽  
pp. 2050076 ◽  
Author(s):  
A. R. Fazio

We are investigating if the double copy structure as product of scattering amplitudes of gauge theories applies to cosmological correlators computed, in a class of theories for inflation, by the operatorial version of the In–In formalism of Schwinger–Keldysh. We consider tree-level momentum–space correlators involving primordial gravitational waves with different polarizations and the scalar curvature fluctuations on a three-dimensional fixed spatial slice. The correlators are sum of terms factorized in a time-dependent scalar factor, which takes into account the curved background where energy is not conserved, and in a so-called tensor factor, constructed by polarization tensors. In the latter, we recognize scattering amplitudes in four-dimensional Minkowski space spanned by three points gravitational amplitudes related by double copy to those of gauge theories. Our study indicates that gravitational waves are double copy of gluons and the primordial scalar curvature is double copy of a scalar with Higgs-like interactions.


2008 ◽  
Vol 23 (26) ◽  
pp. 4289-4313
Author(s):  
ALEXEY SEVOSTYANOV

We introduce and study the four-dimensional analogue of a mass generation mechanism for non-Abelian gauge fields suggested in the paper, Phys. Lett. B403, 297 (1997), in the case of three-dimensional space–time. The construction of the corresponding quantized theory is based on the fact that some nonlocal actions may generate local expressions for Green functions. An example of such a theory is the ordinary Yang–Mills field where the contribution of the Faddeev–Popov determinant to the Green functions can be made local by introducing additional ghost fields. We show that the quantized Hamiltonian for our theory unitarily acts in a Hilbert space of states and prove that the theory is renormalizable to all orders of perturbation theory. One-loop coupling constant and mass renormalizations are also calculated.


1992 ◽  
Vol 07 (23) ◽  
pp. 2077-2085 ◽  
Author(s):  
A. D. POPOV

The anti-self-duality equations for gauge fields in d = 4 and a generalization of these equations to dimension d = 4n are considered. For gauge fields with values in an arbitrary semisimple Lie algebra [Formula: see text] we introduce the ansatz which reduces the anti-self-duality equations in the Euclidean space ℝ4n to a system of equations breaking up into the well known Nahm's equations and some linear equations for scalar field φ.


2021 ◽  
Vol 127 (6) ◽  
Author(s):  
Daniel Flores-Alfonso ◽  
Cesar S. Lopez-Monsalvo ◽  
Marco Maceda

Sign in / Sign up

Export Citation Format

Share Document