kinetic term
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 51)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Adnan Malik ◽  
Iftikhar Ahmad ◽  
Kiran

In this paper, we investigate the behavior of anisotropic compact stars in generalized modified gravity, namely [Formula: see text] gravity, where [Formula: see text] represents the Ricci scalar, [Formula: see text] is the scalar potential function and [Formula: see text] is a kinetic term of [Formula: see text]. We consider the spherically symmetric spacetime to analyze the feasible exposure of compact stars. We observe the behavior of anisotropic compact stars which includes Her X1, SAX J 1808.4-3658 and 4U 1820-30. From the graphical evaluation of energy density, tangential pressure, radial pressure, equilibrium conditions, energy conditions, mass–radius relationship, compactness and stability analysis of compact stars, it is concluded that the behavior of candidates of compact stars is regular in [Formula: see text] gravity for the considered parameter.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Patrocinio Pérez ◽  
Ulises Nucamendi ◽  
Roberto De Arcia

AbstractWe apply the tools of the dynamical system theory in order to revisit and uncover the structure of a nongravitational interaction between pressureless dark matter and dark energy described by a scalar field $$\phi $$ ϕ . For a coupling function $$Q = -(\alpha d\rho _m/dt + \beta d\rho _\phi /dt )$$ Q = - ( α d ρ m / d t + β d ρ ϕ / d t ) , where t is the cosmic time, we have found that it can be rewritten in the form $$Q = 3H (\alpha \rho _m + \beta (d\phi /dt)^2 )/(1-\alpha +\beta )$$ Q = 3 H ( α ρ m + β ( d ϕ / d t ) 2 ) / ( 1 - α + β ) , so that its dependence on the dark matter density and on the kinetic term of the scalar field is linear and proportional to the Hubble parameter. We analyze the scenarios $$\alpha =0$$ α = 0 , $$\alpha = \beta $$ α = β and $$\alpha = -\beta $$ α = - β , separately and in order to describe the cosmological evolution we have calculated various observables. A notable result of this work is that, unlike for the noninteracting scalar field with exponential potential where five critical points appear, in the case studied here, with the exception of the matter dominated solution, the remaining singular points are transformed into scaling solutions enriching the phase space. It is shown that for $$\alpha \ne 0$$ α ≠ 0 , a separatrix arises modifying prominently the structure of the phase space. This represents a novel feature no mentioned before in the literature.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Cristobal Laporte ◽  
Antonio D. Pereira ◽  
Frank Saueressig ◽  
Jian Wang

Abstract Asymptotic Safety provides an elegant mechanism for obtaining a consistent high-energy completion of gravity and gravity-matter systems. Following the initial idea by Steven Weinberg, the construction builds on an interacting fixed point of the theories renormalization group (RG) flow. In this work we use the Wetterich equation for the effective average action to investigate the RG flow of gravity supplemented by a real scalar field. We give a non-perturbative proof that the subspace of interactions respecting the global shift-symmetry of the scalar kinetic term is closed under RG transformations. Subsequently, we compute the beta functions in an approximation comprising the Einstein-Hilbert action supplemented by the shift-symmetric quartic scalar self-interaction and the two lowest order shift-symmetric interactions coupling scalar-bilinears to the spacetime curvature. The computation utilizes the background field method with an arbitrary background, demonstrating that the results are manifestly background independent. Our beta functions exhibit an interacting fixed point suitable for Asymptotic Safety, where all matter interactions are non-vanishing. The presence of this fixed point is rooted in the interplay of the matter couplings which our work tracks for the first time. The relation of our findings with previous results in the literature is discussed in detail and we conclude with a brief outlook on potential phenomenological applications.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2254
Author(s):  
Koblandy Yerzhanov ◽  
Gulnur Bauyrzhan ◽  
Aziza Altaibayeva ◽  
Ratbay Myrzakulov

It is shown that the inflationary model is the result of the symmetry of the generalized F(R,T,X,φ)-cosmological model using the Noether symmetry. It leads to a solution, a particular case of which is Starobinsky’s cosmological model. It is shown that even in the more particular case of cosmological models F(R,X,φ) and F(T,X,φ) the Monge–Ampère equation is still obtained, one of the solutions including the Starobinsky model. For these models, it is shown that one can obtain both power-law and exponential solutions for the scale factor from the Euler–Lagrange equations. In this case, the scalar field φ has similar time dependences, exponential and exponential. The resulting form of the Lagrangian of the model allows us to consider it as a model with R2 or X2. However, it is also shown that previously less studied models with a non-minimal relationship between R and X are important, as one of the possible models. It is shown that in this case the power-law model can have a limited evolutionary period with a negative value of the kinetic term.


Author(s):  
Santu Mondal ◽  
Roshni Bhaumik ◽  
Sourav Dutta ◽  
Subenoy Chakraborty

In this work, a cosmological model is considered having two scalar fields minimally coupled to gravity with a mixed kinetic term. The model is characterized by the coupling function and the potential function which are assumed to depend on one of the scalar fields. Instead of choosing these functions phenomenologically here, they are evaluated assuming the existence of Noether symmetry. By appropriate choice of a point transformation in the augmented space, one of the variables in the Lagrangian becomes cyclic and the evolution equations become much simpler to have solutions. Finally, the solutions are analyzed from cosmological view point.


2021 ◽  
Vol 2105 (1) ◽  
pp. 012007
Author(s):  
C Pallis

Abstract We present a realization of Higgs inflation within Supergravity which is largely tied to the existence of a pole of order two in the kinetic term of the inflaton field. This pole arises due to the selected Kaehler potential which parameterizes the SU(2,1)/(SU(2) × U(1)) manifold with scalar curvature R 21 = − 6 / N . The associated superpotential includes, in addition to the Higgs superfields, a stabilizer superfield, respects a B − L gauge and an R symmetries and contains the first allowed nonrenormalizable term. If the coefficient of this term is almost equal to that of the others within about 10−5 and N = 2, the inflationary observables can be done compatible with the present data. The tuning can be eluded if we modify the Kaehler potential associated with the manifold above. In this case, inflation can be realized with just renormalizable superpotential terms and results to higher tensor-to-scalar ratios as N approaches its maximum at N ≃80.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Milad Solbi ◽  
Kayoomars Karami

AbstractWithin the framework of inflationary model with field-dependent kinetic term for quartic and natural potentials, we investigate generation of the primordial black holes (PBHs) and induced gravitational waves (GWs). In this setup, we consider a kinetic function as $$G(\phi )=g_I(\phi )\big (1+g_{II}(\phi )\big )$$ G ( ϕ ) = g I ( ϕ ) ( 1 + g II ( ϕ ) ) and show that in the presence of first term $$g_I(\phi )$$ g I ( ϕ ) both quartic and natural potentials, in contrast to the standard model of inflation, can be consistent, with the 68% CL of Planck observations. Besides, the second term $$g_{II}(\phi )$$ g II ( ϕ ) can cause a significant enhancement in the primordial curvature perturbations at the small scales which results the PBHs formation. For the both potentials, we obtain an enhancement in the scalar power spectrum at the scales $$k\sim 10^{12}~{\mathrm{Mpc}}^{-1}$$ k ∼ 10 12 Mpc - 1 , $$10^{8}~{\mathrm{Mpc}}^{-1}$$ 10 8 Mpc - 1 , and $$10^{5}~{\mathrm{Mpc}}^{-1}$$ 10 5 Mpc - 1 , which causes PBHs production in mass scales around $$10^{-13}M_{\odot }$$ 10 - 13 M ⊙ , $$10^{-5}M_{\odot }$$ 10 - 5 M ⊙ , and $$10 M_{\odot }$$ 10 M ⊙ , respectively. Observational constraints confirm that PBHs with a mass scale of $$10^{-13}M_{\odot }$$ 10 - 13 M ⊙ can constitute the total of dark matter in the universe. Furthermore, we estimate the energy density parameter of induced GWs which can be examined by the observation. Also we conclude that it can be parametrized as a power-law function $$\Omega _{\mathrm{GW}}\sim (f/f_c)^n$$ Ω GW ∼ ( f / f c ) n , where the power index equals $$n=3-2/\ln (f_c/f)$$ n = 3 - 2 / ln ( f c / f ) in the infrared limit $$f\ll f_{c}$$ f ≪ f c .


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Seyed Ali Hosseini Mansoori ◽  
Li Li ◽  
Morteza Rafiee ◽  
Matteo Baggioli

Abstract In the context of massive gravity theories, we study holographic flows driven by a relevant scalar operator and interpolating between a UV 3-dimensional CFT and a trans-IR Kasner universe. For a large class of scalar potentials, the Cauchy horizon never forms in presence of a non-trivial scalar hair, although, in absence of it, the black hole solution has an inner horizon due to the finite graviton mass. We show that the instability of the Cauchy horizon triggered by the scalar field is associated to a rapid collapse of the Einstein-Rosen bridge. The corresponding flows run smoothly through the event horizon and at late times end in a spacelike singularity at which the asymptotic geometry takes a general Kasner form dominated by the scalar hair kinetic term. Interestingly, we discover deviations from the simple Kasner universe whenever the potential terms become larger than the kinetic one. Finally, we study the effects of the scalar deformation and the graviton mass on the Kasner singularity exponents and show the relationship between the Kasner exponents and the entanglement and butterfly velocities probing the black hole dynamics. Differently from the holographic superconductor case, we can prove explicitly that Josephson oscillations in the interior of the BH are absent.


2021 ◽  
Author(s):  
Juan Garnica Aguirre ◽  
Luis Gomez Diaz ◽  
Andres Navarro Leon ◽  
Yeinzon Rodriguez Garcia

Abstract The generalized SU(2) Proca theory (GSU2P for short) is a variant of the well known generalized Proca theory (GP for short) where the vector field belongs to the Lie algebra of the SU(2) group of global transformations under which the action is made invariant. New interesting possibilities arise in this framework because of the existence of new interactions of purely non-Abelian character and new configurations of the vector field that result in spatial spherical symmetry and the cosmological dynamics being driven by the propagating degrees of freedom. We study the two-dimensional phase space of the system that results when the cosmic triad configuration is employed in the Friedmann-Lemaitre-Robertson-Walker background and find an attractor curve whose attraction basin covers almost all the allowed region. Such an attractor curve corresponds to a primordial inflationary solution that has the following characteristic properties: 1.) it is a de Sitter solution whose Hubble parameter is regulated by a generalized version of the SU(2) group coupling constant, 2.) it is constant-roll including, as opposite limiting cases, the slow-roll and ultra slow-roll varieties, 3.) a number of e-folds $N > 60$ is easily reached, 4.) it has a graceful exit into a radiation dominated period powered by the canonical kinetic term of the vector field and the Einstein-Hilbert term. The free parameters of the action are chosen such that the tensor sector of the theory is the same as that of general relativity at least up to second-order perturbations, thereby avoiding the presence of ghost and Laplacian instabilities in the tensor sector as well as making the gravity waves propagate at light speed. This is a proof of concept of the interesting properties we could find in this scenario when the coupling constants be replaced by general coupling functions.


Author(s):  
Hengfei Wu

This analysis explores the solutions for wormhole in [Formula: see text] gravity, where [Formula: see text], and [Formula: see text] represent the kinetic term, scalar potential, and Ricci scalar, respectively. For this study, we use the spherically symmetric spacetime with the anisotropic source of matter. Further, we use the linear equation of state to complete this current investigation in the background of conformal symmetry motion. By plugging non-zero conformal Killing vectors, we discuss the feasible phantom wormhole configurations. Under the linear equation of state, the stability of wormhole solutions with specific values of parameters is also checked by using the Tolman–Oppenheimer–Volkoff equation. Further, the energy conditions are also discussed with conformal motions. Moreover, it is concluded that our inquired solutions are physically viable in [Formula: see text] gravity.


Sign in / Sign up

Export Citation Format

Share Document