scholarly journals Liouville conformal field theories in higher dimensions

2018 ◽  
Vol 2018 (6) ◽  
Author(s):  
Tom Levy ◽  
Yaron Oz
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Nishant Gupta ◽  
Nemani V. Suryanarayana

Abstract We construct classical theories for scalar fields in arbitrary Carroll spacetimes that are invariant under Carrollian diffeomorphisms and Weyl transformations. When the local symmetries are gauge fixed these theories become Carrollian conformal field theories. We show that generically there are at least two types of such theories: one in which only time derivatives of the fields appear and the other in which both space and time derivatives appear. A classification of such scalar field theories in three (and higher) dimensions up to two derivative order is provided. We show that only a special case of our theories arises in the ultra-relativistic limit of a covariant parent theory.


2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Yin-Chen He ◽  
Junchen Rong ◽  
Ning Su

We propose a roadmap for bootstrapping conformal field theories (CFTs) described by gauge theories in dimensions d>2d>2. In particular, we provide a simple and workable answer to the question of how to detect the gauge group in the bootstrap calculation. Our recipe is based on the notion of decoupling operator, which has a simple (gauge) group theoretical origin, and is reminiscent of the null operator of 2d2d Wess-Zumino-Witten CFTs in higher dimensions. Using the decoupling operator we can efficiently detect the rank (i.e. color number) of gauge groups, e.g., by imposing gap conditions in the CFT spectrum. We also discuss the physics of the equation of motion, which has interesting consequences in the CFT spectrum as well. As an application of our recipes, we study a prototypical critical gauge theory, namely the scalar QED which has a U(1)U(1) gauge field interacting with critical bosons. We show that the scalar QED can be solved by conformal bootstrap, namely we have obtained its kinks and islands in both d=3d=3 and d=2+\epsilond=2+ϵ dimensions.


2020 ◽  
Vol 35 (06) ◽  
pp. 2050036
Author(s):  
Yu Nakayama

How large can anomalous dimensions be in conformal field theories? What can we do to attain larger values? One attempt to obtain large anomalous dimensions efficiently is to use the Pauli exclusion principle. Certain operators constructed out of constituent fermions cannot form bound states without introducing nontrivial excitations. To assess the efficiency of this mechanism, we compare them with the numerical conformal bootstrap bound as well as with other interacting field theory examples. In two dimensions, it turns out to be the most efficient: it saturates the bound and is located at the (second) kink. In higher dimensions, it more or less saturates the bound but it may be slightly inside.


1989 ◽  
Vol 314 (3) ◽  
pp. 707-740 ◽  
Author(s):  
Andrea Cappelli ◽  
Antoine Coste

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Enrico M. Brehm

Abstract We investigate perturbatively tractable deformations of topological defects in two-dimensional conformal field theories. We perturbatively compute the change in the g-factor, the reflectivity, and the entanglement entropy of the conformal defect at the end of these short RG flows. We also give instances of such flows in the diagonal Virasoro and Super-Virasoro Minimal Models.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Hugo A. Camargo ◽  
Lucas Hackl ◽  
Michal P. Heller ◽  
Alexander Jahn ◽  
Tadashi Takayanagi ◽  
...  

2000 ◽  
Vol 15 (30) ◽  
pp. 4857-4870 ◽  
Author(s):  
D. C. CABRA ◽  
E. FRADKIN ◽  
G. L. ROSSINI ◽  
F. A. SCHAPOSNIK

We propose an effective Lagrangian for the low energy theory of the Pfaffian states of the fractional quantum Hall effect in the bulk in terms of non-Abelian Chern–Simons (CS) actions. Our approach exploits the connection between the topological Chern–Simons theory and chiral conformal field theories. This construction can be used to describe a large class of non-Abelian FQH states.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Marko Medenjak ◽  
Giuseppe Policastro ◽  
Takato Yoshimura

Sign in / Sign up

Export Citation Format

Share Document