scholarly journals Impact-parameter dependent nuclear parton distribution functions: EPS09s and EKS98s and their applications in nuclear hard processes

2012 ◽  
Vol 2012 (7) ◽  
Author(s):  
Ilkka Helenius ◽  
Kari J. Eskola ◽  
Heli Honkanen ◽  
Carlos A. Salgado
2003 ◽  
Vol 18 (02) ◽  
pp. 173-207 ◽  
Author(s):  
MATTHIAS BURKARDT

The Fourier transform of generalized parton distribution functions at ξ = 0 describes the distribution of partons in the transverse plane. The physical significance of these impact parameter dependent parton distribution functions is discussed. In particular, it is shown that they satisfy positivity constraints which justify their physical interpretation as a probability density. The generalized parton distribution H is related to impact parameter distribution of unpolarized quarks for an unpolarized nucleon, [Formula: see text] is related to the distribution of longitudinally polarized quarks in a longitudinally polarized nucleon, and E is related to the distortion of the unpolarized quark distribution in the transverse plane when the nucleon has transverse polarization. The magnitude of the resulting transverse flavor dipole moment can be related to the anomalous magnetic moment for that flavor in a model independent way.


1987 ◽  
Vol 02 (04) ◽  
pp. 1369-1387 ◽  
Author(s):  
Wu-Ki Tung

Some non-trivial features of the QCD-improved parton model relevant to applications on heavy particle production and semi-hard (small-x) processes of interest to collider physics are reviewed. The underlying ideas are illustrated by a simple example. Limitations of the naive parton formula as well as first order corrections and subtractions to it are dis-cussed in a quantitative way. The behavior of parton distribution functions at small x and for heavy quarks are discussed. Recent work on possible impact of unconventional small-x behavior of the parton distributions on small-x physics at SSC and Tevatron are summarized. The Drell-Yan process is found to be particularly sensitive to the small x dependence of parton distributions. Measurements of this process at the Tevatron can provide powerful constraints on the expected rates of semi-hard processes at the SSC.


2021 ◽  
Vol 264 ◽  
pp. 107995
Author(s):  
Stefano Carrazza ◽  
Juan M. Cruz-Martinez ◽  
Marco Rossi

2015 ◽  
Vol 37 ◽  
pp. 1560053
Author(s):  
Pedro Jimenez-Delgado

Reports on our latest extractions of parton distribution functions of the nucleon are given. First an overview of the recent JR14 upgrade of our unpolarized PDFs, including NNLO determinations of the strong coupling constant and a discussion of the role of the input scale in parton distribution analysis. In the second part of the talk recent results on the determination of spin-dependent PDFs from the JAM collaboration are reported, including a careful treatment of hadronic and nuclear corrections, as well as reports on the impact of present and future data in our understanding of the spin of the nucleon.


2002 ◽  
Vol 17 (02) ◽  
pp. 269-278
Author(s):  
ALEJANDRO DALEO ◽  
CARLOS A. GARCIA CANAL ◽  
GABRIELA A. NAVARRO ◽  
RODOLFO SASSOT

We discuss the impact of different measurements of the [Formula: see text] asymmetry in the extraction of parametrizations of parton distribution functions.


2013 ◽  
Vol 28 (17) ◽  
pp. 1350079 ◽  
Author(s):  
D. K. CHOUDHURY ◽  
AKBARI JAHAN

We construct a model for double parton distribution functions (dPDFs) based on the notion of self-similarity, pursued earlier for small x physics at HERA. The most general form of dPDFs contains total 13 parameters to be fitted from data of proton–proton collision at LHC. It is shown that the constructed dPDF does not factorize into two single PDFs in conformity with QCD expectation, and it satisfies the condition that at the kinematic boundary x1+x2 = 1 (where x1 and x2 are the longitudinal fractional momenta of two partons), the dPDF vanishes.


Sign in / Sign up

Export Citation Format

Share Document