proton collision
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 91)

H-INDEX

18
(FIVE YEARS 7)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
◽  
R. Aaij ◽  
A. S. W. Abdelmotteleb ◽  
C. Abellán Beteta ◽  
F. J. Abudinen Gallego ◽  
...  

Abstract Using proton-proton collision data, corresponding to an integrated luminosity of 9 fb−1 collected with the LHCb detector, seven decay modes of the $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + meson into a J/ψ or ψ(2S) meson and three charged hadrons, kaons or pions, are studied. The decays $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + → (ψ(2S) → J/ψπ+π−)π+, $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + → ψ(2S)π+π−π+, $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + → J/ψK+π−π+ and $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + → J/ψK+K−K+ are observed for the first time, and evidence for the $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + → ψ(2S)K+K−π+, decay is found, where J/ψ and ψ(2S) mesons are reconstructed in their dimuon decay modes. The ratios of branching fractions between the different $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + decays are reported as well as the fractions of the decays proceeding via intermediate resonances. The results largely support the factorisation approach used for a theoretical description of the studied decays.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
◽  
R. Aaij ◽  
A. S. W. Abdelmotteleb ◽  
C. Abellán Beteta ◽  
T. Ackernley ◽  
...  

Abstract The W boson mass is measured using proton-proton collision data at $$ \sqrt{s} $$ s = 13 TeV corresponding to an integrated luminosity of 1.7 fb−1 recorded during 2016 by the LHCb experiment. With a simultaneous fit of the muon q/pT distribution of a sample of W → μν decays and the ϕ* distribution of a sample of Z → μμ decays the W boson mass is determined to be$$ {m}_w=80354\pm {23}_{\mathrm{stat}}\pm {10}_{\mathrm{exp}}\pm {17}_{\mathrm{theory}}\pm {9}_{\mathrm{PDF}}\mathrm{MeV}, $$ m w = 80354 ± 23 stat ± 10 exp ± 17 theory ± 9 PDF MeV , where uncertainties correspond to contributions from statistical, experimental systematic, theoretical and parton distribution function sources. This is an average of results based on three recent global parton distribution function sets. The measurement agrees well with the prediction of the global electroweak fit and with previous measurements.


2022 ◽  
Vol 17 (01) ◽  
pp. P01013
Author(s):  
Georges Aad ◽  
Brad Abbott ◽  
Dale Charles Abbott ◽  
Adam Abed Abud ◽  
Kira Abeling ◽  
...  

Abstract The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules. During Run 2 (2015–2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb-1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector. Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2. It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%. Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules.


2021 ◽  
Vol 34 ◽  
pp. 18-22
Author(s):  
A.A. Pankov ◽  
I.A. Serenkova ◽  
V.A. Bednyakov

The full ATLAS and CMS Run 2 data set at the Large Hadron Collider (LHC) with time- integrated luminosity of 139 fb −1 and 137 fb −1 , re- spectively, in the diboson channel is used to probe benchmark models with extended gauge sectors: theE 6 -motivated Grand Unification models, the left-right symmetric LR and the sequential standard model. These all predict neutral Z' and charged W' vector bosons, decaying into lepton or electroweak gauge boson pairs. We present constraints on the parameter space of the Z' and W' and compare them to those obtained from the previous analyses performed withLHC data collected at 7 and 8 TeV in Run 1 as well as at 13 TeV in Run 2 at time-integrated luminosity of 36.1 fb −1 . We show that proton-proton collision data at √ s = 13 TeV collected by the ATLAS and the CMS experiments allow to set the most stringent bounds to date on Z-Z' and W-W' mixing.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022054
Author(s):  
A T D’yachenko ◽  
E S Gromova

Abstract In a simple hydrodynamic model, the transverse momentum distributions are found for A hyperons formed in pp collisions at ultrarelativistic energies. The calculated spectra are compared with the experimental data obtained for various colliders in a wide range of proton collision energies, including the data from experiments at the Large Hadron Collider. An interpretation of the transverse momentum spectra of soft photons in pp collisions is proposed, taking into account the X17 boson with a mass of 17 MeV - a new particle, a possible candidate for the role of dark matter particles. A tube model is proposed on the basis of combining two-dimensional quantum chromodynamics and quantum electrodynamics. An interpretation is proposed for the detection of a 38 MeV boson in the spectra of photons emitted in the reactions of protons with carbon nuclei at an incident proton momentum of 5.5 GeV/c. The X38 boson with a mass of 38 MeV has a mass close to the boson mass obtained by us, equal to 35 MeV for an electromagnetic tube. This new particle was discovered in experiments carried out recently in Dubna for the reactionp p + C→2γ + X. To interpret the obtained experimental data on the spectra of emitted photons depending on their mass, it is proposed to use the formulas obtained for massive particles, setting the mass of a boson decaying into two photons equal to 38 MeV. It was proposed to consider bosons X17 and X38 as particles of dark matter.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
◽  
A. Tumasyan ◽  
W. Adam ◽  
J. W. Andrejkovic ◽  
T. Bergauer ◽  
...  

Abstract A measurement of the top quark mass is performed using a data sample enriched with single top quark events produced in the t channel. The study is based on proton- proton collision data, corresponding to an integrated luminosity of 35.9 fb−1, recorded at $$ \sqrt{s} $$ s = 13 TeV by the CMS experiment at the LHC in 2016. Candidate events are selected by requiring an isolated high-momentum lepton (muon or electron) and exactly two jets, of which one is identified as originating from a bottom quark. Multivariate discriminants are designed to separate the signal from the background. Optimized thresholds are placed on the discriminant outputs to obtain an event sample with high signal purity. The top quark mass is found to be $$ {172.13}_{-0.77}^{+0.76} $$ 172.13 − 0.77 + 0.76 GeV, where the uncertainty includes both the statistical and systematic components, reaching sub-GeV precision for the first time in this event topology. The masses of the top quark and antiquark are also determined separately using the lepton charge in the final state, from which the mass ratio and difference are determined to be $$ {0.9952}_{-0.0104}^{+0.0079} $$ 0.9952 − 0.0104 + 0.0079 and $$ {0.83}_{-1.35}^{+1.79} $$ 0.83 − 1.35 + 1.79 GeV, respectively. The results are consistent with CPT invariance.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
◽  
R. Aaij ◽  
A. S. W. Abdelmotteleb ◽  
C. Abellán Beteta ◽  
T. Ackernley ◽  
...  

Abstract A search for the doubly charmed baryon $$ {\varXi}_{cc}^{+} $$ Ξ cc + is performed in the $$ {\varXi}_c^{+}{\pi}^{-}{\pi}^{+} $$ Ξ c + π − π + invariant-mass spectrum, where the $$ {\varXi}_c^{+} $$ Ξ c + baryon is reconstructed in the pK−π+ final state. The study uses proton-proton collision data collected with the LHCb detector at a centre- of-mass energy of 13 TeV, corresponding to a total integrated luminosity of 5.4 fb−1. No significant signal is observed in the invariant-mass range of 3.4–3.8 GeV/c2. Upper limits are set on the ratio of branching fractions multiplied by the production cross-section with respect to the $$ {\varXi}_{cc}^{++} $$ Ξ cc + + → ($$ {\varXi}_c^{+} $$ Ξ c + → pK−π+)π+ decay for different $$ {\varXi}_{cc}^{+} $$ Ξ cc + mass and lifetime hypotheses in the rapidity range from 2.0 to 4.5 and the transverse momentum range from 2.5 to 25 GeV/c. The results from this search are combined with a previously published search for the $$ {\varXi}_{cc}^{+} $$ Ξ cc + →$$ {\varLambda}_c^{+} $$ Λ c + K−π+ decay mode, yielding a maximum local significance of 4.0 standard deviations around the mass of 3620 MeV/c2, including systematic uncertainties. Taking into account the look-elsewhere effect in the 3.5–3.7 GeV/c2 mass window, the combined global significance is 2.9 standard deviations including systematic uncertainties.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2144
Author(s):  
Arnaud Ferrari ◽  
Nikolaos Rompotis

One doublet of complex scalar fields is the minimal content of the Higgs sector in order to achieve spontaneous electroweak symmetry breaking and, in turn, to generate the masses of fundamental particles in the Standard Model. However, several theories beyond the Standard Model predict a nonminimal Higgs sector and introduce additional singlets, doublets or even higher-order weak isospin representations, thereby yielding additional Higgs bosons. With its high proton–proton collision energy (13 TeV during Run-2), the Large Hadron Collider opens a new window towards the exploration of extended Higgs sectors. This review article summarises the current state-of-the-art experimental results recently obtained in searches for new neutral and charged Higgs bosons with a partial or full Run-2 dataset.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
K. Abeling ◽  
...  

AbstractA search for R-parity-violating supersymmetry in final states characterized by high jet multiplicity, at least one isolated light lepton and either zero or at least three b-tagged jets is presented. The search uses $${139}\,{\text {fb}^{-1}}$$ 139 fb - 1 of $$\sqrt{s} = {13}\hbox { TeV}$$ s = 13 TeV proton–proton collision data collected by the ATLAS experiment during Run 2 of the Large Hadron Collider. The results are interpreted in the context of R-parity-violating supersymmetry models that feature gluino production, top-squark production, or electroweakino production. The dominant sources of background are estimated using a data-driven model, based on observables at medium jet multiplicity, to predict the b-tagged jet multiplicity distribution at the higher jet multiplicities used in the search. Machine-learning techniques are used to reach sensitivity to electroweakino production, extending the data-driven background estimation to the shape of the machine-learning discriminant. No significant excess over the Standard Model expectation is observed and exclusion limits at the 95% confidence level are extracted, reaching as high as 2.4 TeV in gluino mass, 1.35 TeV in top-squark mass, and 320 (365) GeV in higgsino (wino) mass.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
◽  
R. Aaij ◽  
A. S. W. Abdelmotteleb ◽  
C. Abellán Beteta ◽  
T. Ackernley ◽  
...  

Abstract An angular analysis of the rare decay $$ {B}_s^0 $$ B s 0 → ϕμ+μ− is presented, using proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of 8.4 fb−1. The observables describing the angular distributions of the decay $$ {B}_s^0 $$ B s 0 → ϕμ+μ− are determined in regions of q2, the square of the dimuon invariant mass. The results are consistent with Standard Model predictions.


Sign in / Sign up

Export Citation Format

Share Document