scholarly journals Massive gravity simplified: a quadratic action

2011 ◽  
Vol 2011 (8) ◽  
Author(s):  
Ali H. Chamseddine ◽  
Viatcheslav Mukhanov
2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Ruifeng Dong ◽  
Dejan Stojkovic

2021 ◽  
Vol 103 (12) ◽  
Author(s):  
Amin Rezaei Akbarieh ◽  
Sobhan Kazempour ◽  
Lijing Shao

2021 ◽  
Vol 127 (6) ◽  
Author(s):  
Daniel Flores-Alfonso ◽  
Cesar S. Lopez-Monsalvo ◽  
Marco Maceda

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Arshia Momeni ◽  
Justinas Rumbutis ◽  
Andrew J. Tolley

Abstract We consider the double copy of massive Yang-Mills theory in four dimensions, whose decoupling limit is a nonlinear sigma model. The latter may be regarded as the leading terms in the low energy effective theory of a heavy Higgs model, in which the Higgs has been integrated out. The obtained double copy effective field theory contains a massive spin-2, massive spin-1 and a massive spin-0 field, and we construct explicitly its interacting Lagrangian up to fourth order in fields. We find that up to this order, the spin-2 self interactions match those of the dRGT massive gravity theory, and that all the interactions are consistent with a Λ3 = (m2MPl)1/3 cutoff. We construct explicitly the Λ3 decoupling limit of this theory and show that it is equivalent to a bi-Galileon extension of the standard Λ3 massive gravity decoupling limit theory. Although it is known that the double copy of a nonlinear sigma model is a special Galileon, the decoupling limit of massive Yang-Mills theory is a more general Galileon theory. This demonstrates that the decoupling limit and double copy procedures do not commute and we clarify why this is the case in terms of the scaling of their kinematic factors.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 143
Author(s):  
Jose Beltrán Jiménez ◽  
Tomi S. Koivisto

In this paper, we provide a general framework for the construction of the Einstein frame within non-linear extensions of the teleparallel equivalents of General Relativity. These include the metric teleparallel and the symmetric teleparallel, but also the general teleparallel theories. We write the actions in a form where we separate the Einstein–Hilbert term, the conformal mode due to the non-linear nature of the theories (which is analogous to the extra degree of freedom in f(R) theories), and the sector that manifestly shows the dynamics arising from the breaking of local symmetries. This frame is then used to study the theories around the Minkowski background, and we show how all the non-linear extensions share the same quadratic action around Minkowski. As a matter of fact, we find that the gauge symmetries that are lost by going to the non-linear generalisations of the teleparallel General Relativity equivalents arise as accidental symmetries in the linear theory around Minkowski. Remarkably, we also find that the conformal mode can be absorbed into a Weyl rescaling of the metric at this order and, consequently, it disappears from the linear spectrum so only the usual massless spin 2 perturbation propagates. These findings unify in a common framework the known fact that no additional modes propagate on Minkowski backgrounds, and we can trace it back to the existence of accidental gauge symmetries of such a background.


2015 ◽  
Vol 24 (12) ◽  
pp. 1544015 ◽  
Author(s):  
Eric Bergshoeff ◽  
Wout Merbis ◽  
Alasdair J. Routh ◽  
Paul K. Townsend

Consistency of Einstein’s gravitational field equation [Formula: see text] imposes a “conservation condition” on the [Formula: see text]-tensor that is satisfied by (i) matter stress tensors, as a consequence of the matter equations of motion and (ii) identically by certain other tensors, such as the metric tensor. However, there is a third way, overlooked until now because it implies a “nongeometrical” action: one not constructed from the metric and its derivatives alone. The new possibility is exemplified by the 3D “minimal massive gravity” model, which resolves the “bulk versus boundary” unitarity problem of topologically massive gravity with Anti-de Sitter asymptotics. Although all known examples of the third way are in three spacetime dimensions, the idea is general and could, in principle, apply to higher dimensional theories.


1985 ◽  
Vol 44 (1) ◽  
pp. 15-19
Author(s):  
B. Baumann ◽  
C. Ho

2014 ◽  
Vol 45 (8) ◽  
pp. 1671
Author(s):  
Z. Kakushadze

2014 ◽  
Vol 90 (10) ◽  
Author(s):  
S. Deser ◽  
M. Sandora ◽  
A. Waldron ◽  
G. Zahariade
Keyword(s):  

2021 ◽  
Vol 103 (4) ◽  
Author(s):  
Toshifumi Noumi ◽  
Kaishu Saito ◽  
Jiro Soda ◽  
Daisuke Yoshida
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document