scholarly journals Holographic Fermi surfaces in charge density wave from D2-D8

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Subir Mukhopadhyay ◽  
Nishal Rai

Abstract D2-D8 model admits a numerical solution that corresponds to a charge density wave and a spin density wave. Considering that as the background, we numerically solve the Dirac equation for probe fermions. From the solution, we obtain the Green’s function and study the behaviour of the spectral density. We begin with generic fermions and have studied the formation of the Fermi surface and where it develops a gap. In addition, we have incorporated an ionic lattice and study its effect on the Fermi surface. Then we analysed the worldvolume fermions. In this particular model we do not find Fermi surface for the dual operators.

1993 ◽  
Vol 07 (23n24) ◽  
pp. 3973-4003 ◽  
Author(s):  
P. FOURY ◽  
J.P. POUGET

The structural instabilities towards the formation of a charge density wave (CDW) ground state exhibited by several layered Mo and W bronzes and oxides are reviewed. It is shown that in these two-dimensional (2D) metals, including the purple bronzes A x Mo 6 O 17 (A=K, Na, Tl; x≈1), the γ and η phases of MO 4 O 11 and the monophosphate tungsten bronzes with pentagonal tunnels ( PO 2)4 ( WO 3)2m(m=4, 6, 7), the CDW instability can be associated with particular chains of MoO 6 or WO 6 octahedra of the ReO 3 type slabs along which there is a strong overlap of the t 2g orbitals. The CDW critical wave vectors of the purple bronzes, Mo 4 O 11 and the tungsten bronzes with m=4 and 6 lead to a common nesting between differently oriented 1D Fermi surfaces. It is suggested that the anharmonic CDW modulation, which occurs in the tungsten bronzes with m≥7, could be the structural fingerprint of electron localization effects.


1992 ◽  
Vol 105-110 ◽  
pp. 703-706
Author(s):  
Jozef Krištiak ◽  
O. Sausa ◽  
Katarina Kristiaková ◽  
R. Hlubina

2004 ◽  
Vol 69 (12) ◽  
Author(s):  
M. Bovet ◽  
D. Popović ◽  
F. Clerc ◽  
C. Koitzsch ◽  
U. Probst ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Z. Y. Liu ◽  
J. Li ◽  
J. F. Zhang ◽  
J. Li ◽  
P. T. Yang ◽  
...  

AbstractHfTe3 single crystal undergoes a charge-density-wave (CDW) transition at TCDW = 93 K without the appearance of superconductivity (SC) down to 50 mK at ambient pressure. Here, we determined its CDW vector q = 0.91(1) a* + 0.27(1) c* via low-temperature transmission electron microscope and then performed comprehensive high-pressure transport measurements along three major crystallographic axes. Our results indicate that the superconducting pairing starts to occur within the quasi-one-dimensional (Q1D) -Te2-Te3- chain at 4–5 K but the phase coherence between the superconducting chains cannot be realized along either the b- or c-axis down to at least 1.4 K, giving rise to an extremely anisotropic SC rarely seen in real materials. We have discussed the prominent Q1D SC in pressurized HfTe3 in terms of the anisotropic Fermi surfaces arising from the unidirectional Te-5px electronic states and the local pairs formed along the -Te2-Te3- chains based on the first-principles electronic structure calculations.


1990 ◽  
Vol 41 (4) ◽  
pp. 2052-2056 ◽  
Author(s):  
W. F. Huang ◽  
Z. J. Xu ◽  
S. H. Liu ◽  
M. K. Wu

2018 ◽  
Vol 115 (27) ◽  
pp. 6986-6990 ◽  
Author(s):  
Shang Gao ◽  
Felix Flicker ◽  
Raman Sankar ◽  
He Zhao ◽  
Zheng Ren ◽  
...  

A charge density wave (CDW) is one of the fundamental instabilities of the Fermi surface occurring in a wide range of quantum materials. In dimensions higher than one, where Fermi surface nesting can play only a limited role, the selection of the particular wavevector and geometry of an emerging CDW should in principle be susceptible to controllable manipulation. In this work, we implement a simple method for straining materials compatible with low-temperature scanning tunneling microscopy/spectroscopy (STM/S), and use it to strain-engineer CDWs in 2H-NbSe2. Our STM/S measurements, combined with theory, reveal how small strain-induced changes in the electronic band structure and phonon dispersion lead to dramatic changes in the CDW ordering wavevector and geometry. Our work unveils the microscopic mechanism of a CDW formation in this system, and can serve as a general tool compatible with a range of spectroscopic techniques to engineer electronic states in any material where local strain or lattice symmetry breaking plays a role.


2021 ◽  
Vol 103 (5) ◽  
Author(s):  
M. Trigo ◽  
P. Giraldo-Gallo ◽  
J. N. Clark ◽  
M. E. Kozina ◽  
T. Henighan ◽  
...  

2021 ◽  
Author(s):  
Naotaka Yoshikawa ◽  
Hiroki Suganuma ◽  
Hideki Matsuoka ◽  
Yuki Tanaka ◽  
Pierre Hemme ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document