scholarly journals On the tree-level structure of scattering amplitudes of massless particles

2011 ◽  
Vol 2011 (11) ◽  
Author(s):  
Paolo Benincasa ◽  
Eduardo Conde
2014 ◽  
Vol 29 (05) ◽  
pp. 1430005 ◽  
Author(s):  
Paolo Benincasa

We review some recent developments in the understanding of field theories in the perturbative regime. In particular, we discuss the notions of analyticity, unitarity and locality, and therefore the singularity structure of scattering amplitudes in general interacting theories. We describe their tree-level structure and their on-shell representations, as well as the links between the tree-level structure itself and the structure of the loop amplitudes. Finally, we describe the on-shell diagrammatics recently proposed both on general grounds and in the remarkable example of planar supersymmetric theories.


1989 ◽  
Vol 04 (21) ◽  
pp. 2063-2071
Author(s):  
GEORGE SIOPSIS

It is shown that the contact term discovered by Wendt is sufficient to ensure finiteness of all tree-level scattering amplitudes in Witten’s field theory of open superstrings. Its inclusion in the action also leads to a gauge-invariant theory. Thus, no additional higher-order counterterms in the action are needed.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Sabrina Pasterski ◽  
Andrea Puhm ◽  
Emilio Trevisani

Abstract We examine the structure of global conformal multiplets in 2D celestial CFT. For a 4D bulk theory containing massless particles of spin s = $$ \left\{0,\frac{1}{2},1,\frac{3}{2},2\right\} $$ 0 1 2 1 3 2 2 we classify and construct all SL(2,ℂ) primary descendants which are organized into ‘celestial diamonds’. This explicit construction is achieved using a wavefunction-based approach that allows us to map 4D scattering amplitudes to celestial CFT correlators of operators with SL(2,ℂ) conformal dimension ∆ and spin J. Radiative conformal primary wavefunctions have J = ±s and give rise to conformally soft theorems for special values of ∆ ∈ $$ \frac{1}{2}\mathbb{Z} $$ 1 2 ℤ . They are located either at the top of celestial diamonds, where they descend to trivial null primaries, or at the left and right corners, where they descend both to and from generalized conformal primary wavefunctions which have |J| ≤ s. Celestial diamonds naturally incorporate degeneracies of opposite helicity particles via the 2D shadow transform relating radiative primaries and account for the global and asymptotic symmetries in gauge theory and gravity.


1994 ◽  
Vol 09 (18) ◽  
pp. 1695-1700 ◽  
Author(s):  
O.M. DEL CIMA

One discusses the tree-level unitarity and presents asymptotic behavior of scattering amplitudes for three-dimensional gauge-invariant models where complex Chern- Simons-Maxwell fields (with and without a Proca-like mass) are coupled to an Abelian gauge field.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Maor Ben-Shahar ◽  
Max Guillen

Abstract Using the pure spinor master action for 10D super-Yang-Mills in the gauge b0V = QΞ, tree-level scattering amplitudes are calculated through the perturbiner method, and shown to match those obtained from pure spinor CFT techniques. We find kinematic numerators made of nested b-ghost operators, and show that the Siegel gauge condition b0V = 0 gives rise to color-kinematics duality satisfying numerators whose Jacobi identity follows from the Jacobi identity of a kinematic algebra.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Vittorio Del Duca ◽  
Claude Duhr ◽  
Rayan Haindl ◽  
Achilleas Lazopoulos ◽  
Martin Michel

Abstract We compute in conventional dimensional regularisation the tree-level splitting amplitudes for a gluon parent which splits into four collinear partons. This is part of the universal infrared behaviour of the QCD scattering amplitudes at next-to-next-to-next-to-leading order (N3LO) in the strong coupling constant. Combined with our earlier results for a quark parent, this completes the set of tree-level splitting amplitudes required at this order. We also study iterated collinear limits where a subset of the four collinear partons become themselves collinear.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
David Stefanyszyn ◽  
Jakub Supeł

Abstract In a recent paper [1], three-particle interactions without invariance under Lorentz boosts were constrained by demanding that they yield tree-level four-particle scattering amplitudes with singularities as dictated by unitarity and locality. In this brief note, we show how to obtain an independent verification and consistency check of these boostless bootstrap results using BCFW momentum shifts. We point out that the constructibility criterion, related to the behaviour of the deformed amplitude at infinite BCFW parameter z, is not strictly necessary to obtain non-trivial constraints for the three-particle interactions.


Sign in / Sign up

Export Citation Format

Share Document