scholarly journals Breaking supersymmetry with pure spinors

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Andrea Legramandi ◽  
Alessandro Tomasiello

Abstract For several classes of BPS vacua, we find a procedure to modify the PDEs that imply preserved supersymmetry and the equations of motion so that they still imply the latter but not the former. In each case we trace back this supersymmetry-breaking deformation to a distinct modification of the pure spinor equations that provide a geometrical interpretation of supersymmetry. We give some concrete examples: first we generalize the Imamura class of Mink6 solutions by removing a symmetry requirement, and then derive some local and global solutions both before and after breaking supersymmetry.

2012 ◽  
Vol 43 (8) ◽  
pp. 746-771 ◽  
Author(s):  
Esther Tippmann ◽  
Pamela Sharkey Scott ◽  
Vincent Mangematin

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Vivian Martins Gomes ◽  
Antonio Fernando Bertachini de Almeida Prado ◽  
Justyna Golebiewska

The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.


Author(s):  
D. Younesian ◽  
E. Esmailzadeh ◽  
M. H. Kargarnovin

Vibration suppression of elastically supported beams subjected to moving loads is investigated in this work. For a Timoshenko beam with an arbitrary number of elastic supports, subjected to a constant axial compressive force, and having a tuned mass damper (TMD) installed at the mid-span, the equations of motion are derived and using the Galerkin approach the solution is sought. The optimum values of the frequency and damping ratio are determined both analytically and numerically and presented as some design curves directly applicable in the TMD design for bridge structures. To show the efficiency of the designed TMD, computer simulation for two real bridges, subjected to a S.K.S Japanese high-speed train, is carried out and the results obtained are compared for before and after the installation of the TMD system.


2009 ◽  
Vol 77 (2) ◽  
Author(s):  
Chandrika P. Vyasarayani ◽  
John McPhee ◽  
Stephen Birkett

In this work, we discuss the limitations of the existing collocation-based coefficient of restitution method for simulating impacts in continuous systems. We propose a new method for modeling the impact dynamics of continuous systems based on the unit impulse response. The developed method allows one to relate modal velocity initial conditions before and after impact without requiring the integration of the system equations of motion during impact. The proposed method has been used to model the impact of a pinned-pinned beam with a rigid obstacle. Numerical simulations are presented to illustrate the inability of the collocation-based coefficient of restitution method to predict an accurate and energy-consistent response. We also compare the results obtained by unit impulse-based coefficient of restitution method with a penalty approach.


Sign in / Sign up

Export Citation Format

Share Document