scholarly journals Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future

2016 ◽  
Vol 2016 (12) ◽  
Author(s):  
J. de Blas ◽  
M. Ciuchini ◽  
E. Franco ◽  
S. Mishima ◽  
M. Pierini ◽  
...  
2021 ◽  
Vol 136 (9) ◽  
Author(s):  
S. Heinemeyer ◽  
S. Jadach ◽  
J. Reuter

AbstractHigh-precision experimental measurements of the properties of the Higgs boson at $$\sim 125$$ ∼ 125  GeV as well as electroweak precision observables such as the W-boson mass or the effective weak leptonic mixing angle are expected at future $$e^+e^-$$ e + e - colliders such as the FCC-ee. This high anticipated precision has to be matched with theory predictions for the measured quantities at the same level of accuracy. We briefly summarize the status of these predictions within the standard model and of the tools that are used for their determination. We outline how the theory predictions will have to be improved in order to reach the required accuracy, and also comment on the simulation frameworks for the Higgs and EW precision program.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
B. C. Allanach ◽  
J. Eliel Camargo-Molina ◽  
Joe Davighi

AbstractWhile it is known that third family hypercharge models can explain the neutral current B-anomalies, it was hitherto unclear whether the $$Z-Z^\prime $$ Z - Z ′ mixing predicted by such models could simultaneously fit electroweak precision observables. Here, we perform global fits of several third family hypercharge models to a combination of electroweak data and those data pertinent to the neutral current B-anomalies. While the Standard Model is in tension with this combined data set with a p-value of .0007, simple versions of the models (fitting two additional parameters each) provide much improved fits. The original Third Family Hypercharge Model, for example, has a p-value of $${.065}$$ . 065 , with $$\sqrt{\Delta \chi ^2}=6.5\sigma $$ Δ χ 2 = 6.5 σ .


2008 ◽  
Vol 23 (18) ◽  
pp. 2653-2685 ◽  
Author(s):  
ZHENYU HAN

This is a pedagogical and self-contained review on obtaining electroweak precision constraints on TeV scale new physics using the effective theory method. We identify a set of relevant effective operators in the Standard Model and calculate from them corrections to all major electroweak precision observables. The corrections are compared with data to put constraints on the effective operators. Various approaches and applications in the literature are reviewed.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Jason Aebischer ◽  
Jacky Kumar

Abstract We study Yukawa Renormalization Group (RG) running effects in the context of the Standard Model Effective Theory (SMEFT). The Yukawa running being flavour dependent leads to RG-induced off-diagonal entries, so that initially diagonal Yukawa matrices at the high scale have to be rediagonalized at the electroweak (EW) scale. Performing such flavour rotations can lead to flavour violating operators which differ from the ones obtained through SMEFT RG evolution. We show, that these flavour rotations can have a large impact on low-energy phenomenology. In order to demonstrate this effect, we com- pare the two sources of flavour violation numerically as well as analytically and study their influence on several examples of down-type flavour transitions. For this purpose we con- sider $$ {B}_s-{\overline{B}}_s $$ B s − B ¯ s mixing, b → sγ, b → sℓℓ as well as electroweak precision observables. We show that the rotation effect can be comparable or even larger than the contribution from pure RGE evolution of the Wilson coefficients.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
E. Cortina Gil ◽  
◽  
A. Kleimenova ◽  
E. Minucci ◽  
S. Padolski ◽  
...  

Abstract The NA62 experiment at the CERN SPS reports a study of a sample of 4 × 109 tagged π0 mesons from K+ → π+π0(γ), searching for the decay of the π0 to invisible particles. No signal is observed in excess of the expected background fluctuations. An upper limit of 4.4 × 10−9 is set on the branching ratio at 90% confidence level, improving on previous results by a factor of 60. This result can also be interpreted as a model- independent upper limit on the branching ratio for the decay K+ → π+X, where X is a particle escaping detection with mass in the range 0.110–0.155 GeV/c2 and rest lifetime greater than 100 ps. Model-dependent upper limits are obtained assuming X to be an axion-like particle with dominant fermion couplings or a dark scalar mixing with the Standard Model Higgs boson.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
A. M. Sirunyan ◽  
◽  
A. Tumasyan ◽  
W. Adam ◽  
T. Bergauer ◽  
...  

Abstract A search is presented for a Higgs boson that is produced via vector boson fusion and that decays to an undetected particle and an isolated photon. The search is performed by the CMS collaboration at the LHC, using a data set corresponding to an integrated luminosity of 130 fb−1, recorded at a center-of-mass energy of 13 TeV in 2016–2018. No significant excess of events above the expectation from the standard model background is found. The results are interpreted in the context of a theoretical model in which the undetected particle is a massless dark photon. An upper limit is set on the product of the cross section for production via vector boson fusion and the branching fraction for such a Higgs boson decay, as a function of the Higgs boson mass. For a Higgs boson mass of 125 GeV, assuming the standard model production rates, the observed (expected) 95% confidence level upper limit on the branching fraction is 3.5 (2.8)%. This is the first search for such decays in the vector boson fusion channel. Combination with a previous search for Higgs bosons produced in association with a Z boson results in an observed (expected) upper limit on the branching fraction of 2.9 (2.1)% at 95% confidence level.


2021 ◽  
Vol 812 ◽  
pp. 135980
Author(s):  
G. Aad ◽  
B. Abbott ◽  
D.C. Abbott ◽  
A. Abed Abud ◽  
K. Abeling ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document