scholarly journals Global fits of third family hypercharge models to neutral current B-anomalies and electroweak precision observables

2021 ◽  
Vol 81 (8) ◽  
Author(s):  
B. C. Allanach ◽  
J. Eliel Camargo-Molina ◽  
Joe Davighi

AbstractWhile it is known that third family hypercharge models can explain the neutral current B-anomalies, it was hitherto unclear whether the $$Z-Z^\prime $$ Z - Z ′ mixing predicted by such models could simultaneously fit electroweak precision observables. Here, we perform global fits of several third family hypercharge models to a combination of electroweak data and those data pertinent to the neutral current B-anomalies. While the Standard Model is in tension with this combined data set with a p-value of .0007, simple versions of the models (fitting two additional parameters each) provide much improved fits. The original Third Family Hypercharge Model, for example, has a p-value of $${.065}$$ . 065 , with $$\sqrt{\Delta \chi ^2}=6.5\sigma $$ Δ χ 2 = 6.5 σ .

2021 ◽  
Vol 136 (9) ◽  
Author(s):  
S. Heinemeyer ◽  
S. Jadach ◽  
J. Reuter

AbstractHigh-precision experimental measurements of the properties of the Higgs boson at $$\sim 125$$ ∼ 125  GeV as well as electroweak precision observables such as the W-boson mass or the effective weak leptonic mixing angle are expected at future $$e^+e^-$$ e + e - colliders such as the FCC-ee. This high anticipated precision has to be matched with theory predictions for the measured quantities at the same level of accuracy. We briefly summarize the status of these predictions within the standard model and of the tools that are used for their determination. We outline how the theory predictions will have to be improved in order to reach the required accuracy, and also comment on the simulation frameworks for the Higgs and EW precision program.


2008 ◽  
Vol 23 (18) ◽  
pp. 2653-2685 ◽  
Author(s):  
ZHENYU HAN

This is a pedagogical and self-contained review on obtaining electroweak precision constraints on TeV scale new physics using the effective theory method. We identify a set of relevant effective operators in the Standard Model and calculate from them corrections to all major electroweak precision observables. The corrections are compared with data to put constraints on the effective operators. Various approaches and applications in the literature are reviewed.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Jason Aebischer ◽  
Jacky Kumar

Abstract We study Yukawa Renormalization Group (RG) running effects in the context of the Standard Model Effective Theory (SMEFT). The Yukawa running being flavour dependent leads to RG-induced off-diagonal entries, so that initially diagonal Yukawa matrices at the high scale have to be rediagonalized at the electroweak (EW) scale. Performing such flavour rotations can lead to flavour violating operators which differ from the ones obtained through SMEFT RG evolution. We show, that these flavour rotations can have a large impact on low-energy phenomenology. In order to demonstrate this effect, we com- pare the two sources of flavour violation numerically as well as analytically and study their influence on several examples of down-type flavour transitions. For this purpose we con- sider $$ {B}_s-{\overline{B}}_s $$ B s − B ¯ s mixing, b → sγ, b → sℓℓ as well as electroweak precision observables. We show that the rotation effect can be comparable or even larger than the contribution from pure RGE evolution of the Wilson coefficients.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Stefan Antusch ◽  
A. Hammad ◽  
Ahmed Rashed

Abstract We investigate the sensitivity of electron-proton (ep) colliders for charged lepton flavor violation (cLFV) in an effective theory approach, considering a general effective Lagrangian for the conversion of an electron into a muon or a tau via the effective coupling to a neutral gauge boson or a neutral scalar field. For the photon, the Z boson and the Higgs particle of the Standard Model, we present the sensitivities of the LHeC for the coefficients of the effective operators, calculated from an analysis at the reconstructed level. As an example model where such flavor changing neutral current (FCNC) operators are generated at loop level, we consider the extension of the Standard Model by sterile neutrinos. We show that the LHeC could already probe the LFV conversion of an electron into a muon beyond the current experimental bounds, and could reach more than an order of magnitude higher sensitivity than the present limits for LFV conversion of an electron into a tau. We discuss that the high sensitivities are possible because the converted charged lepton is dominantly emitted in the backward direction, enabling an efficient separation of the signal from the background.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Véronique Bernard ◽  
Sébastien Descotes-Genon ◽  
Luiz Vale Silva

Abstract We consider a left-right symmetric extension of the Standard Model where the spontaneous breakdown of the left-right symmetry is triggered by doublets. The electroweak ρ parameter is protected from large corrections in this Doublet Left-Right Model (DLRM), contrary to the triplet case. This allows in principle for more diverse patterns of symmetry breaking. We consider several constraints on the gauge and scalar sectors of DLRM: the unitarity of scattering processes involving gauge bosons with longitudinal polarisations, the radiative corrections to the muon ∆r parameter and the electroweak precision observables measured at the Z pole and at low energies. Combining these constraints within the frequentist CKMfitter approach, we see that the fit pushes the scale of left-right symmetry breaking up to a few TeV, while favouring an electroweak symmetry breaking triggered not only by the SU(2)L×SU(2)R bi-doublet, which is the case most commonly considered in the literature, but also by the SU(2)L doublet.


1997 ◽  
Vol 12 (04) ◽  
pp. 723-742 ◽  
Author(s):  
P. Bamert

We analyze LEP and SLC data from the 1995 Summer Conferences as well as from low energy neutral current experiments for signals of new physics. The reasons for doing this are twofold: first to explain the deviations from the Standard Model observed in Rb and Rc and second to constrain nonstandard contributions to couplings of the Z0 boson to all fermions and to the oblique parameters. We do so by comparing the data with the Standard Model as well as with a number of test hypotheses concerning the nature of the new physics. These include nonstandard [Formula: see text]-, [Formula: see text]- and [Formula: see text]-couplings as well as the couplings of the Z0 to fermions of the entire first, second and third generations and universal corrections to all up- and down-type quark couplings (as can arise see for example in Z' mixing models). We find that nonstandard [Formula: see text] couplings are both necessary and sufficient to explain the data and in particular the Rb anomaly. It is not possible to explain Rb, Rc and a value of the strong coupling constant consistent with low energy determinations invoking only nonstandard [Formula: see text]- and [Formula: see text]-couplings. To do so one has to have also new physics contributions to the [Formula: see text] or universal corrections to all [Formula: see text] couplings.


Sign in / Sign up

Export Citation Format

Share Document