Solving the Asymmetric Travelling Salesman Problem with time windows by branch-and-cut

2001 ◽  
Vol 90 (3) ◽  
pp. 475-506 ◽  
Author(s):  
Norbert Ascheuer ◽  
Matteo Fischetti ◽  
Martin Grötschel
2011 ◽  
Vol 2011 (0) ◽  
pp. _S142011-1-_S142011-5
Author(s):  
Tadanobu MIZOGAKI ◽  
Masao SUGI ◽  
Masashi YAMAMOTO ◽  
Hidetoshi NAGAI ◽  
Yusuke SHIOMI ◽  
...  

2014 ◽  
Vol 48 (1) ◽  
pp. 46-58 ◽  
Author(s):  
Jean-François Cordeau ◽  
Gianpaolo Ghiani ◽  
Emanuela Guerriero

Teknika ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 110-118
Author(s):  
Herdiesel Santoso ◽  
Rachmad Sanuri

Divisi pemasaran STMIK El Rahma memiliki permasalahan dengan penjadwalan rute kunjungan ketika harus melakukan perjalanan multi destinasi ke sekolah-sekolah untuk melakukan promosi. Perjalanan multi destinasi dengan mempertimbangkan waktu kunjungan merupakan permasalahan Travelling Salesman Problem with Time Windows (TSP-TW). Algoritma Genetika merupakan salah satu metode pencarian yang dapat digunakan untuk memberikan rute perjalanan yang optimal. Rekomendasi yang diberikan tidak hanya mempertimbangkan jarak tetapi juga waktu tempuh didapatkan menggunakan Google Maps API. Skenario pengujian yang dilakukan adalah pengujian banyak generasi optimal, pengujian banyak populasi optimal, pengujian kombinasi probabilitas crossover (Pc) dan proabilitas mutasi (Pm), serta pengujian konsistensi solusi yang dihasilkan Algoritma Genetika. Hasil pengujian menunjukan bahwa jumlah individu terbaik adalah 150 individu dalam satu populasi. Kriteria berhenti jika setelah 127 generasi berturut-turut didapatkan nilai fitness tertinggi yang tidak berubah dan kombinasi probabilitas crossover dan probabilitas mutasi yang paling optimal adalah {0.3 : 0.7}.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Julius Beneoluchi Odili ◽  
A. Noraziah ◽  
M. Zarina

This paper presents a comparative performance analysis of some metaheuristics such as the African Buffalo Optimization algorithm (ABO), Improved Extremal Optimization (IEO), Model-Induced Max-Min Ant Colony Optimization (MIMM-ACO), Max-Min Ant System (MMAS), Cooperative Genetic Ant System (CGAS), and the heuristic, Randomized Insertion Algorithm (RAI) to solve the asymmetric Travelling Salesman Problem (ATSP). Quite unlike the symmetric Travelling Salesman Problem, there is a paucity of research studies on the asymmetric counterpart. This is quite disturbing because most real-life applications are actually asymmetric in nature. These six algorithms were chosen for their performance comparison because they have posted some of the best results in literature and they employ different search schemes in attempting solutions to the ATSP. The comparative algorithms in this study employ different techniques in their search for solutions to ATSP: the African Buffalo Optimization employs the modified Karp–Steele mechanism, Model-Induced Max-Min Ant Colony Optimization (MIMM-ACO) employs the path construction with patching technique, Cooperative Genetic Ant System uses natural selection and ordering; Randomized Insertion Algorithm uses the random insertion approach, and the Improved Extremal Optimization uses the grid search strategy. After a number of experiments on the popular but difficult 15 out of the 19 ATSP instances in TSPLIB, the results show that the African Buffalo Optimization algorithm slightly outperformed the other algorithms in obtaining the optimal results and at a much faster speed.


Sign in / Sign up

Export Citation Format

Share Document