scholarly journals TNF-α priming effect on polymorphonuclear leukocyte reactive oxygen species generation and adhesion molecule expression in hemodialyzed patients

2006 ◽  
Vol 54 (3) ◽  
pp. 209-215 ◽  
Author(s):  
Jacek Rysz ◽  
Maciej Banach ◽  
Robert A. Stolarek ◽  
Jarosław Pasnik ◽  
Aleksandra Ciałkowska-Rysz ◽  
...  
2000 ◽  
Vol 279 (2) ◽  
pp. L302-L311 ◽  
Author(s):  
Andrea L. True ◽  
Arshad Rahman ◽  
Asrar B. Malik

Reactive oxygen species have been proposed to signal the activation of the transcription factor nuclear factor (NF)-κB in response to tumor necrosis factor (TNF)-α challenge. In the present study, we investigated the effects of H2O2 and TNF-α in mediating activation of NF-κB and transcription of the intercellular adhesion molecule (ICAM)-1 gene. Northern blot analysis showed that TNF-α exposure of human dermal microvascular endothelial cells (HMEC-1) induced marked increases in ICAM-1 mRNA and cell surface protein expression. In contrast, H2O2 added at subcytolytic concentrations failed to activate ICAM-1 expression. Challenge with H2O2 also failed to induce NF-κB-driven reporter gene expression in the transduced HMEC-1 cells, whereas TNF-α increased the NF-κB-driven gene expression ∼10-fold. Gel supershift assay revealed the presence of p65 (Rel A), p50, and c-Rel in both H2O2- and TNF-α-induced NF-κB complexes bound to the ICAM-1 promoter, with the binding of the p65 subunit being the most prominent. In vivo phosphorylation studies, however, showed that TNF-α exposure induced marked phosphorylation of NF-κB p65 in HMEC-1 cells, whereas H2O2 had no effect. These results suggest that reactive oxygen species generation in endothelial cells mediates the binding of NF-κB to nuclear DNA, whereas TNF-α generates additional signals that induce phosphorylation of the bound NF-κB p65 and confer transcriptional competency to NF-κB.


2006 ◽  
Vol 291 (5) ◽  
pp. C897-C908 ◽  
Author(s):  
Shyamali Basuroy ◽  
Sujoy Bhattacharya ◽  
Dilyara Tcheranova ◽  
Yan Qu ◽  
Raymond F. Regan ◽  
...  

Tumor necrosis factor-α (TNF-α) causes oxidative stress and apoptosis in a variety of cell types. Heme oxygenase (HO) degrades heme to bilirubin, an antioxidant, and carbon monoxide (CO), a cell cycle modulator, and a vasodilator. Newborn pig cerebral microvascular endothelial cells (CMVEC) highly express constitutive HO-2. We investigated the role of HO-2 in protection against TNF-α-induced apoptosis in cerebral vascular endothelium. In CMVEC from mice and newborn pigs, 15 ng/ml TNF-α alone, or with 10 μg/ml cycloheximide (CHX) caused apoptosis detected by nuclear translocation of p65 NF-κB, caspase-3 activation, DNA fragmentation, cell-cell contact destabilization, and cell detachment. TNF-α did not induce HO-1 expression in CMVEC. CMVEC from HO-2 knockout mice showed greater sensitivity to apoptosis caused by serum deprivation and TNF-α than did wild-type mice. TNF-α increased reactive oxygen species generation, including hydrogen peroxide and superoxide radicals, as detected by dihydrorhodamine-123 and dihydroethidium. The TNF-α response was inhibited by superoxide dismutase and catalase suggesting apoptosis is oxidative stress related. Inhibition of endogenous HO-2 in newborn pig CMVEC increased oxidative stress and exaggerated apoptosis caused by serum deprivation and TNF-α. In HO-1-overexpressing CMVEC (HO-1 selective induction by cobalt portophyrin), TNF-α did not cause apoptosis. A CO-releasing compound, CORM-A1, and bilirubin blocked TNF-α-induced reactive oxygen species accumulation and apoptosis consistent with the antioxidant and antiapoptotic roles of the end products of HO activity. We conclude that HO-2 is critical for protection of cerebrovascular endothelium against apoptotic changes induced by oxidative stress and cytokine-mediated inflammation.


2002 ◽  
Vol 283 (5) ◽  
pp. H2054-H2061 ◽  
Author(s):  
Manabu Takano ◽  
Avedis Meneshian ◽  
Emran Sheikh ◽  
Yasuhiko Yamakawa ◽  
Kirsten Bass Wilkins ◽  
...  

Endothelial cell ICAM-1 upregulation in response to TNF-α is mediated in part by reactive oxygen species (ROS) generated by the endothelial membrane-associated NADPH oxidase and occurs maximally after 4 h as the synthesis of new protein is required. However, thrombin-stimulated P-selectin upregulation is bimodal, the first peak occurring within minutes. We hypothesize that this early peak, which results from the release of preformed P-selectin from within Weibel-Palade bodies, is mediated in part by ROS generated from the endothelial membrane-associated xanthine oxidase. We found that this rapid expression of P-selectin on the surface of endothelial cells was accompanied by qualitatively parallel increases in ROS generation. Both P-selectin expression and ROS generation were inhibited, dose dependently, by the exogenous administration of disparate cell-permeable antioxidants and also by the inhibition of either of the known membrane-associated ROS-generating enzymes NADPH oxidase or xanthine oxidase. This rapid, posttranslational cell signaling response, mediated by ROS generated not only by the classical NADPH oxidase but also by xanthine oxidase, may well represent an important physiological trigger of the microvascular inflammatory response.


2006 ◽  
Vol 291 (2) ◽  
pp. H741-H747 ◽  
Author(s):  
Pu Qin ◽  
Xiaoyan Tang ◽  
M. Merle Elloso ◽  
Douglas C. Harnish

Bile acids are synthesized in the liver, stored in gallbladder, and secreted into the intestine to aid in the absorption of lipid-soluble nutrients. In addition, bile acids also actively participate in regulation of gene expression through their ability to act as ligands for the nuclear receptor farnesoid X receptor or by activating kinase signaling pathways. Under cholestatic conditions, elevated levels of bile acids in the liver induce hepatic inflammation, and because bile acid levels are also elevated in the circulation, they might also induce vascular inflammation. To test this hypothesis, primary human umbilical vein endothelial cells (HUVEC) and human aortic endothelial cells were treated with bile acids, and the expression of ICAM-1, VCAM-1, and E-selectin were monitored. The three major bile acids found in the circulation, chenodeoxycholic acid, deoxycholic acid, and lithocholic acid, all strongly induced both the mRNA and protein expression of ICAM-1 and VCAM-1. To delineate the mechanism, the experiments were conducted in the presence of various kinase inhibitors. The results demonstrate that the bile acid-mediated induction of adhesion molecule expression occurs by stimulation of NF-κB and p38 MAPK signaling pathways through the elevation in reactive oxygen species. The bile acid-induced cell surface expression of ICAM-1 and VCAM-1 was sufficient to result in the increased adhesion of THP-1 monocytes to the HUVEC, suggesting that elevated levels of bile acids in the circulation may cause endothelium dysfunction and contribute to the initiation of early events associated with vascular lesion formation.


Sign in / Sign up

Export Citation Format

Share Document