scholarly journals Engeletin Protects Against TNF-α-Induced Apoptosis and Reactive Oxygen Species Generation in Chondrocytes and Alleviates Osteoarthritis in vivo

2021 ◽  
Vol Volume 14 ◽  
pp. 745-760
Author(s):  
Hao Wang ◽  
Zengxin Jiang ◽  
Zhiying Pang ◽  
Guobin Qi ◽  
Bingxuan Hua ◽  
...  
2000 ◽  
Vol 279 (2) ◽  
pp. L302-L311 ◽  
Author(s):  
Andrea L. True ◽  
Arshad Rahman ◽  
Asrar B. Malik

Reactive oxygen species have been proposed to signal the activation of the transcription factor nuclear factor (NF)-κB in response to tumor necrosis factor (TNF)-α challenge. In the present study, we investigated the effects of H2O2 and TNF-α in mediating activation of NF-κB and transcription of the intercellular adhesion molecule (ICAM)-1 gene. Northern blot analysis showed that TNF-α exposure of human dermal microvascular endothelial cells (HMEC-1) induced marked increases in ICAM-1 mRNA and cell surface protein expression. In contrast, H2O2 added at subcytolytic concentrations failed to activate ICAM-1 expression. Challenge with H2O2 also failed to induce NF-κB-driven reporter gene expression in the transduced HMEC-1 cells, whereas TNF-α increased the NF-κB-driven gene expression ∼10-fold. Gel supershift assay revealed the presence of p65 (Rel A), p50, and c-Rel in both H2O2- and TNF-α-induced NF-κB complexes bound to the ICAM-1 promoter, with the binding of the p65 subunit being the most prominent. In vivo phosphorylation studies, however, showed that TNF-α exposure induced marked phosphorylation of NF-κB p65 in HMEC-1 cells, whereas H2O2 had no effect. These results suggest that reactive oxygen species generation in endothelial cells mediates the binding of NF-κB to nuclear DNA, whereas TNF-α generates additional signals that induce phosphorylation of the bound NF-κB p65 and confer transcriptional competency to NF-κB.


2018 ◽  
Vol 49 (6) ◽  
pp. 2320-2332 ◽  
Author(s):  
Guo Zu ◽  
Tingting Zhou ◽  
Ningwei Che ◽  
Xiangwen Zhang

Background/Aims: Ischemia-reperfusion (I/R) adversely affects the intestinal mucosa. The major mechanisms of I/R are the generation of reactive oxygen species (ROS) and apoptosis. Salvianolic acid A (SalA) is suggested to be an effective antioxidative and antiapoptotic agent in numerous pathological injuries. The present study investigated the protective role of SalA in I/R of the intestine. Methods: Adult male Sprague-Dawley rats were subjected to intestinal I/R injury in vivo. In vitro experiments were performed in IEC-6 cells subjected to hypoxia/ reoxygenation (H/R) stimulation to simulate intestinal I/R. TNF-α, IL-1β, and IL-6 levels were measured using enzyme-linked immunosorbent assay. Malondialdehyde and myeloperoxidase and glutathione peroxidase levels were measured using biochemical analysis. Apoptosis was measured by terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling staining or flow cytometry in vivo and in vitro. The level of reactive oxygen species (ROS) was measured by dichlorodihydrofluorescin diacetate (DCFH-DA) staining. Western blotting was performed to determine the expression of heme oxygenase-1 (HO-1), Nrf2 and proteins associated with apoptosis. The mRNA expressions of Nrf2 and HO-1 were detected by quantitative real-time polymerase chain reaction in vivo and in vitro. Results: Malondialdehyde level and myeloperoxidase and glutathione peroxidase, TNF-α, IL-1β, and IL-6 levels group in intestinal tissue decreased significantly in the SalA pretreatment groups compared to the I/R group. SalA markedly abolished intestinal injury compared to the I/R group. SalA significantly attenuated apoptosis and increased Nrf2/HO-1 expression in vivo and in vitro. However, Nrf2 siRNA treatment partially abrogated the above mentioned effects of SalA in H/R-induced ROS and apoptosis in IEC-6 cells. Conclusion: The present study demonstrated that SalA ameliorated oxidation, inhibited the release of pro-inflammatory cytokines and alleviated apoptosis in I/R-induced injury and that these protective effects may partially occur via regulation of the Nrf2/ HO-1 pathways.


2010 ◽  
Vol 292 (1) ◽  
pp. 111-118 ◽  
Author(s):  
Dong-Oh Moon ◽  
Mun-Ock Kim ◽  
Sang-Hyuck Kang ◽  
Yung Hyun Choi ◽  
Sung Yong Park ◽  
...  

2006 ◽  
Vol 291 (5) ◽  
pp. C897-C908 ◽  
Author(s):  
Shyamali Basuroy ◽  
Sujoy Bhattacharya ◽  
Dilyara Tcheranova ◽  
Yan Qu ◽  
Raymond F. Regan ◽  
...  

Tumor necrosis factor-α (TNF-α) causes oxidative stress and apoptosis in a variety of cell types. Heme oxygenase (HO) degrades heme to bilirubin, an antioxidant, and carbon monoxide (CO), a cell cycle modulator, and a vasodilator. Newborn pig cerebral microvascular endothelial cells (CMVEC) highly express constitutive HO-2. We investigated the role of HO-2 in protection against TNF-α-induced apoptosis in cerebral vascular endothelium. In CMVEC from mice and newborn pigs, 15 ng/ml TNF-α alone, or with 10 μg/ml cycloheximide (CHX) caused apoptosis detected by nuclear translocation of p65 NF-κB, caspase-3 activation, DNA fragmentation, cell-cell contact destabilization, and cell detachment. TNF-α did not induce HO-1 expression in CMVEC. CMVEC from HO-2 knockout mice showed greater sensitivity to apoptosis caused by serum deprivation and TNF-α than did wild-type mice. TNF-α increased reactive oxygen species generation, including hydrogen peroxide and superoxide radicals, as detected by dihydrorhodamine-123 and dihydroethidium. The TNF-α response was inhibited by superoxide dismutase and catalase suggesting apoptosis is oxidative stress related. Inhibition of endogenous HO-2 in newborn pig CMVEC increased oxidative stress and exaggerated apoptosis caused by serum deprivation and TNF-α. In HO-1-overexpressing CMVEC (HO-1 selective induction by cobalt portophyrin), TNF-α did not cause apoptosis. A CO-releasing compound, CORM-A1, and bilirubin blocked TNF-α-induced reactive oxygen species accumulation and apoptosis consistent with the antioxidant and antiapoptotic roles of the end products of HO activity. We conclude that HO-2 is critical for protection of cerebrovascular endothelium against apoptotic changes induced by oxidative stress and cytokine-mediated inflammation.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4370-4370
Author(s):  
Guo Kunyuan ◽  
Miaorong She ◽  
Haiyan Hu ◽  
Xinqing Niu ◽  
Sanfang Tu ◽  
...  

Abstract 2-Methoxyestradiol (2-ME) is a new anticancer agent currently under investigation for treatment of leukemia. We evaluated the effects of 2-ME-induced apoptosis in two myeloid leukemia cell lines (U937 and HL-60) in association with reactive oxygen species (ROS) generation. We found that 2-ME resulted in viability decrease in a dose-dependent manner, generated ROS: nitric oxide and superoxide anions, and mitochondria damage. 2-ME-induced apoptosis correlated with increase in ROS. Quenching of ROS with N-acetyl-L-cysteine protected leukemia cells from the cytotoxicity of 2-ME and prevented apoptosis induction by 2-ME. Furthermore, addition of manumycin, a farnesyltransferase inhibitor, demonstrated by our previous studies that induced apoptosis of leukemic cells and induced ROS, significantly enhanced the apoptosis-induced by 2-ME. In conclusion, cellular ROS generation play an important role in the cytotoxic effect of 2-ME. It is possible to use ROS-generation agents such as manumycin to enhance the antileukemic effect. Such a combination strategy need the further in vivo justify and may have potential clinical application.


2010 ◽  
Vol 149 (2) ◽  
pp. 180-183 ◽  
Author(s):  
N. V. Ryazanceva ◽  
V. V. Novickiy ◽  
O. B. Zhukova ◽  
A. K. Biktasova ◽  
O. E. Chechina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document