scholarly journals An Explicit Formula for the Bell Numbers in Terms of the Lah and Stirling Numbers

2015 ◽  
Vol 13 (5) ◽  
pp. 2795-2800 ◽  
Author(s):  
Feng Qi
2019 ◽  
Author(s):  
Sumit Kumar Jha

We give a proof of Zhang's congruence for the Euler numbers. The proof uses an explicit formula for the Euler numbers in terms of the Stirling numbers of the second kind.


2019 ◽  
Vol 15 (09) ◽  
pp. 1827-1855 ◽  
Author(s):  
Min Qiu ◽  
Shaofang Hong

Let [Formula: see text] and [Formula: see text] be positive integers. We denote by [Formula: see text] the 2-adic valuation of [Formula: see text]. The Stirling numbers of the first kind, denoted by [Formula: see text], count the number of permutations of [Formula: see text] elements with [Formula: see text] disjoint cycles. In recent years, Lengyel, Komatsu and Young, Leonetti and Sanna, and Adelberg made some progress on the study of the [Formula: see text]-adic valuations of [Formula: see text]. In this paper, by introducing the concept of [Formula: see text]th Stirling numbers of the first kind and providing a detailed 2-adic analysis, we show an explicit formula on the 2-adic valuation of [Formula: see text]. We also prove that [Formula: see text] holds for all integers [Formula: see text] between 1 and [Formula: see text]. As a corollary, we show that [Formula: see text] if [Formula: see text] is odd and [Formula: see text]. This confirms partially a conjecture of Lengyel raised in 2015. Furthermore, we show that if [Formula: see text], then [Formula: see text] and [Formula: see text], where [Formula: see text] stands for the [Formula: see text]th elementary symmetric functions of [Formula: see text]. The latter one supports the conjecture of Leonetti and Sanna suggested in 2017.


10.37236/564 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Toufik Mansour ◽  
Matthias Schork ◽  
Mark Shattuck

A new family of generalized Stirling and Bell numbers is introduced by considering powers $(VU)^n$ of the noncommuting variables $U,V$ satisfying $UV=VU+hV^s$. The case $s=0$ (and $h=1$) corresponds to the conventional Stirling numbers of second kind and Bell numbers. For these generalized Stirling numbers, the recursion relation is given and explicit expressions are derived. Furthermore, they are shown to be connection coefficients and a combinatorial interpretation in terms of statistics is given. It is also shown that these Stirling numbers can be interpreted as $s$-rook numbers introduced by Goldman and Haglund. For the associated generalized Bell numbers, the recursion relation as well as a closed form for the exponential generating function is derived. Furthermore, an analogue of Dobinski's formula is given for these Bell numbers.


2019 ◽  
Author(s):  
Sumit Kumar Jha

In this note, we derive a possibly new explicit formula for the Euler numbers in terms of the Stirling numbers of the second kind.


Filomat ◽  
2018 ◽  
Vol 32 (20) ◽  
pp. 6879-6891
Author(s):  
Irem Kucukoglu ◽  
Yilmaz Simsek

The first aim of this paper is to give identities and relations for a new family of the combinatorial numbers and the Apostol-Euler type numbers of the second kind, the Stirling numbers, the Apostol-Bernoulli type numbers, the Bell numbers and the numbers of the Lyndon words by using some techniques including generating functions, functional equations and inversion formulas. The second aim is to derive some derivative formulas and combinatorial sums by applying derivative operators including the Caputo fractional derivative operators. Moreover, we give a recurrence relation for the Apostol-Euler type numbers of the second kind. By using this recurrence relation, we construct a computation algorithm for these numbers. In addition, we derive some novel formulas including the Stirling numbers and other special numbers. Finally, we also some remarks, comments and observations related to our results.


2019 ◽  
Vol 15 (01) ◽  
pp. 67-84 ◽  
Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

In this paper, we primarily consider a generalization of the fermionic [Formula: see text]-adic [Formula: see text]-integral on [Formula: see text] including the parameters [Formula: see text] and [Formula: see text] and investigate its some basic properties. By means of the foregoing integral, we introduce two generalizations of [Formula: see text]-Changhee polynomials and numbers as [Formula: see text]-Changhee polynomials and numbers with weight [Formula: see text] and [Formula: see text]-Changhee polynomials and numbers of second kind with weight [Formula: see text]. For the mentioned polynomials, we obtain new and interesting relationships and identities including symmetric relation, recurrence relations and correlations associated with the weighted [Formula: see text]-Euler polynomials, [Formula: see text]-Stirling numbers of the second kind and Stirling numbers of first and second kinds. Then, we discover multifarious relationships among the two types of weighted [Formula: see text]-Changhee polynomials and [Formula: see text]-adic gamma function. Also, we compute the weighted fermionic [Formula: see text]-adic [Formula: see text]-integral of the derivative of [Formula: see text]-adic gamma function. Moreover, we give a novel representation for the [Formula: see text]-adic Euler constant by means of the weighted [Formula: see text]-Changhee polynomials and numbers. We finally provide a quirky explicit formula for [Formula: see text]-adic Euler constant.


Sign in / Sign up

Export Citation Format

Share Document