scholarly journals 2-Adic valuations of Stirling numbers of the first kind

2019 ◽  
Vol 15 (09) ◽  
pp. 1827-1855 ◽  
Author(s):  
Min Qiu ◽  
Shaofang Hong

Let [Formula: see text] and [Formula: see text] be positive integers. We denote by [Formula: see text] the 2-adic valuation of [Formula: see text]. The Stirling numbers of the first kind, denoted by [Formula: see text], count the number of permutations of [Formula: see text] elements with [Formula: see text] disjoint cycles. In recent years, Lengyel, Komatsu and Young, Leonetti and Sanna, and Adelberg made some progress on the study of the [Formula: see text]-adic valuations of [Formula: see text]. In this paper, by introducing the concept of [Formula: see text]th Stirling numbers of the first kind and providing a detailed 2-adic analysis, we show an explicit formula on the 2-adic valuation of [Formula: see text]. We also prove that [Formula: see text] holds for all integers [Formula: see text] between 1 and [Formula: see text]. As a corollary, we show that [Formula: see text] if [Formula: see text] is odd and [Formula: see text]. This confirms partially a conjecture of Lengyel raised in 2015. Furthermore, we show that if [Formula: see text], then [Formula: see text] and [Formula: see text], where [Formula: see text] stands for the [Formula: see text]th elementary symmetric functions of [Formula: see text]. The latter one supports the conjecture of Leonetti and Sanna suggested in 2017.

10.37236/2131 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Pietro Mongelli

The Jacobi-Stirling numbers and the Legendre-Stirling numbers of the first and second kind were first introduced by Everitt et al. (2002) and (2007) in the spectral theory. In this paper we note that Jacobi-Stirling numbers and Legendre-Stirling numbers are specializations of elementary and complete symmetric functions. We then study combinatorial interpretations of this specialization and obtain new combinatorial  interpretations of the Jacobi-Stirling and Legendre-Stirling numbers.


2015 ◽  
Vol 65 (5) ◽  
Author(s):  
Chunlin Wang ◽  
Shaofang Hong

AbstractErdős and Niven proved that for any positive integers m and d, there are only finitely many positive integers n for which one or more of the elementary symmetric functions of 1/m, 1/(m + d), . . . , 1/(m + nd) are integers. In this paper, we show that if n ≥ 2, then none of the elementary symmetric functions of 1, 1/3, . . . , 1/(2n − 1) is an integer


2012 ◽  
Vol 60 (2) ◽  
pp. 219-224 ◽  
Author(s):  
Alexander Kovačec ◽  
Salma Kuhlmann ◽  
Cordian Riener

10.37236/1877 ◽  
2005 ◽  
Vol 11 (2) ◽  
Author(s):  
J. Bell ◽  
A. M. Garsia ◽  
N. Wallach

We introduce here a new approach to the study of $m$-quasi-invariants. This approach consists in representing $m$-quasi-invariants as $N^{tuples}$ of invariants. Then conditions are sought which characterize such $N^{tuples}$. We study here the case of $S_3$ $m$-quasi-invariants. This leads to an interesting free module of triplets of polynomials in the elementary symmetric functions $e_1,e_2,e_3$ which explains certain observed properties of $S_3$ $m$-quasi-invariants. We also use basic results on finitely generated graded algebras to derive some general facts about regular sequences of $S_n$ $m$-quasi-invariants


2021 ◽  
Vol 27 (2) ◽  
pp. 101-110
Author(s):  
José Luis Cereceda

In this paper, we obtain a new formula for the sums of k-th powers of the first n positive integers, Sk(n), that involves the hyperharmonic numbers and the Stirling numbers of the second kind. Then, using an explicit representation for the hyperharmonic numbers, we generalize this formula to the sums of powers of an arbitrary arithmetic progression. Furthermore, we express the Bernoulli polynomials in terms of hyperharmonic polynomials and Stirling numbers of the second kind. Finally, we extend the obtained formula for Sk(n) to negative values of n.


10.37236/1547 ◽  
2000 ◽  
Vol 8 (1) ◽  
Author(s):  
Leigh Roberts

Recently Lapointe et. al. [3] have expressed Jack Polynomials as determinants in monomial symmetric functions $m_\lambda$. We express these polynomials as determinants in elementary symmetric functions $e_\lambda$, showing a fundamental symmetry between these two expansions. Moreover, both expansions are obtained indifferently by applying the Calogero-Sutherland operator in physics or quasi Laplace Beltrami operators arising from differential geometry and statistics. Examples are given, and comments on the sparseness of the determinants so obtained conclude the paper.


2019 ◽  
Author(s):  
Sumit Kumar Jha

We give a proof of Zhang's congruence for the Euler numbers. The proof uses an explicit formula for the Euler numbers in terms of the Stirling numbers of the second kind.


Sign in / Sign up

Export Citation Format

Share Document