scholarly journals Fractional differential relations for the Lerch zeta function

Author(s):  
Arran Fernandez ◽  
Jean-Daniel Djida

AbstractWe explore a recently opened approach to the study of zeta functions, namely the approach of fractional calculus. By utilising the machinery of fractional derivatives and integrals, which have rarely been applied in analytic number theory before, we are able to obtain some fractional differential relations and finally a partial differential equation of fractional type which is satisfied by the Lerch zeta function.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ahmed Nouara ◽  
Abdelkader Amara ◽  
Eva Kaslik ◽  
Sina Etemad ◽  
Shahram Rezapour ◽  
...  

AbstractIn this research work, a newly-proposed multiterm hybrid multi-order fractional boundary value problem is studied. The existence results for the supposed hybrid fractional differential equation that involves Riemann–Liouville fractional derivatives and integrals of multi-orders type are derived using Dhage’s technique, which deals with a composition of three operators. After that, its stability analysis of Ulam–Hyers type and the relevant generalizations are checked. Some illustrative numerical examples are provided at the end to illustrate and validate our obtained results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Assia Guezane-Lakoud ◽  
Adem Kılıçman

Abstract The purpose of this study is to discuss the existence of solutions for a boundary value problem at resonance generated by a nonlinear differential equation involving both right and left Caputo fractional derivatives. The proofs of the existence of solutions are mainly based on Mawhin’s coincidence degree theory. We provide an example to illustrate the main result.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xianzhen Zhang ◽  
Zuohua Liu ◽  
Hui Peng ◽  
Xianmin Zhang ◽  
Shiyong Yang

Based on some recent works about the general solution of fractional differential equations with instantaneous impulses, a Caputo-Hadamard fractional differential equation with noninstantaneous impulses is studied in this paper. An equivalent integral equation with some undetermined constants is obtained for this fractional order system with noninstantaneous impulses, which means that there is general solution for the impulsive systems. Next, an example is given to illustrate the obtained result.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1431
Author(s):  
Junesang Choi ◽  
Recep Şahin ◽  
Oğuz Yağcı ◽  
Dojin Kim

A number of generalized Hurwitz–Lerch zeta functions have been presented and investigated. In this study, by choosing a known extended Hurwitz–Lerch zeta function of two variables, which has been very recently presented, in a systematic way, we propose to establish certain formulas and representations for this extended Hurwitz–Lerch zeta function such as integral representations, generating functions, derivative formulas and recurrence relations. We also point out that the results presented here can be reduced to yield corresponding results for several less generalized Hurwitz–Lerch zeta functions than the extended Hurwitz–Lerch zeta function considered here. For further investigation, among possibly various more generalized Hurwitz–Lerch zeta functions than the one considered here, two more generalized settings are provided.


2020 ◽  
Vol 23 (1) ◽  
pp. 103-125 ◽  
Author(s):  
Latif A-M. Hanna ◽  
Maryam Al-Kandari ◽  
Yuri Luchko

AbstractIn this paper, we first provide a survey of some basic properties of the left-and right-hand sided Erdélyi-Kober fractional integrals and derivatives and introduce their compositions in form of the composed Erdélyi-Kober operators. Then we derive a convolutional representation for the composed Erdélyi-Kober fractional integral in terms of its convolution in the Dimovski sense. For this convolution, we also determine the divisors of zero. These both results are then used for construction of an operational method for solving an initial value problem for a fractional differential equation with the left-and right-hand sided Erdélyi-Kober fractional derivatives defined on the positive semi-axis. Its solution is obtained in terms of the four-parameters Wright function of the second kind. The same operational method can be employed for other fractional differential equation with the left-and right-hand sided Erdélyi-Kober fractional derivatives.


2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Yanning Wang ◽  
Jianwen Zhou ◽  
Yongkun Li

Using conformable fractional calculus on time scales, we first introduce fractional Sobolev spaces on time scales, characterize them, and define weak conformable fractional derivatives. Second, we prove the equivalence of some norms in the introduced spaces and derive their completeness, reflexivity, uniform convexity, and compactness of some imbeddings, which can be regarded as a novelty item. Then, as an application, we present a recent approach via variational methods and critical point theory to obtain the existence of solutions for ap-Laplacian conformable fractional differential equation boundary value problem on time scaleT:  Tα(Tαup-2Tα(u))(t)=∇F(σ(t),u(σ(t))),Δ-a.e.  t∈a,bTκ2,u(a)-u(b)=0,Tα(u)(a)-Tα(u)(b)=0,whereTα(u)(t)denotes the conformable fractional derivative ofuof orderαatt,σis the forward jump operator,a,b∈T,  0<a<b,  p>1, andF:[0,T]T×RN→R. By establishing a proper variational setting, we obtain three existence results. Finally, we present two examples to illustrate the feasibility and effectiveness of the existence results.


Author(s):  
Myong-Ha Kim ◽  
Guk-Chol Ri ◽  
Hyong-Chol O

AbstractThis paper provides results on the existence and representation of solution to an initial value problem for the general multi-term linear fractional differential equation with generalized Riemann-Liouville fractional derivatives and constant coefficients by using operational calculus of Mikusinski’s type. We prove that the initial value problem has the solution if and only if some initial values are zero.


2020 ◽  
Vol 36 (3) ◽  
pp. 453-462
Author(s):  
RODICA LUCA

We investigate the existence of solutions for a Riemann-Liouville fractional differential equation with a nonlinearity dependent of fractional integrals, subject to nonlocal boundary conditions which contain various fractional derivatives and Riemann-Stieltjes integrals. In the proof of our main results we use different fixed point theorems.


Sign in / Sign up

Export Citation Format

Share Document