scholarly journals On the 2-Packing Differential of a Graph

2021 ◽  
Vol 76 (3) ◽  
Author(s):  
A. Cabrera Martínez ◽  
M. L. Puertas ◽  
J. A. Rodríguez-Velázquez

AbstractLet G be a graph of order $${\text {n}}(G)$$ n ( G ) and vertex set V(G). Given a set $$S\subseteq V(G)$$ S ⊆ V ( G ) , we define the external neighbourhood of S as the set $$N_e(S)$$ N e ( S ) of all vertices in $$V(G){\setminus } S$$ V ( G ) \ S having at least one neighbour in S. The differential of S is defined to be $$\partial (S)=|N_e(S)|-|S|$$ ∂ ( S ) = | N e ( S ) | - | S | . In this paper, we introduce the study of the 2-packing differential of a graph, which we define as $$\partial _{2p}(G)=\max \{\partial (S):\, S\subseteq V(G) \text { is a }2\text {-packing}\}.$$ ∂ 2 p ( G ) = max { ∂ ( S ) : S ⊆ V ( G ) is a 2 -packing } . We show that the 2-packing differential is closely related to several graph parameters, including the packing number, the independent domination number, the total domination number, the perfect differential, and the unique response Roman domination number. In particular, we show that the theory of 2-packing differentials is an appropriate framework to investigate the unique response Roman domination number of a graph without the use of functions. Among other results, we obtain a Gallai-type theorem, which states that $$\partial _{2p}(G)+\mu _{_R}(G)={\text {n}}(G)$$ ∂ 2 p ( G ) + μ R ( G ) = n ( G ) , where $$\mu _{_R}(G)$$ μ R ( G ) denotes the unique response Roman domination number of G. As a consequence of the study, we derive several combinatorial results on $$\mu _{_R}(G)$$ μ R ( G ) , and we show that the problem of finding this parameter is NP-hard. In addition, the particular case of lexicographic product graphs is discussed.

2021 ◽  
Vol 6 (10) ◽  
pp. 11084-11096
Author(s):  
Abel Cabrera Martínez ◽  
◽  
Iztok Peterin ◽  
Ismael G. Yero ◽  
◽  
...  

<abstract><p>Let $ G $ be a graph with vertex set $ V(G) $. A function $ f:V(G)\rightarrow \{0, 1, 2\} $ is a Roman dominating function on $ G $ if every vertex $ v\in V(G) $ for which $ f(v) = 0 $ is adjacent to at least one vertex $ u\in V(G) $ such that $ f(u) = 2 $. The Roman domination number of $ G $ is the minimum weight $ \omega(f) = \sum_{x\in V(G)}f(x) $ among all Roman dominating functions $ f $ on $ G $. In this article we study the Roman domination number of direct product graphs and rooted product graphs. Specifically, we give several tight lower and upper bounds for the Roman domination number of direct product graphs involving some parameters of the factors, which include the domination, (total) Roman domination, and packing numbers among others. On the other hand, we prove that the Roman domination number of rooted product graphs can attain only three possible values, which depend on the order, the domination number, and the Roman domination number of the factors in the product. In addition, theoretical characterizations of the classes of rooted product graphs achieving each of these three possible values are given.</p></abstract>


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1318
Author(s):  
Zheng Kou ◽  
Saeed Kosari ◽  
Guoliang Hao ◽  
Jafar Amjadi ◽  
Nesa Khalili

This paper is devoted to the study of the quadruple Roman domination in trees, and it is a contribution to the Special Issue “Theoretical computer science and discrete mathematics” of Symmetry. For any positive integer k, a [k]-Roman dominating function ([k]-RDF) of a simple graph G is a function from the vertex set V of G to the set {0,1,2,…,k+1} if for any vertex u∈V with f(u)<k, ∑x∈N(u)∪{u}f(x)≥|{x∈N(u):f(x)≥1}|+k, where N(u) is the open neighborhood of u. The weight of a [k]-RDF is the value Σv∈Vf(v). The minimum weight of a [k]-RDF is called the [k]-Roman domination number γ[kR](G) of G. In this paper, we establish sharp upper and lower bounds on γ[4R](T) for nontrivial trees T and characterize extremal trees.


Author(s):  
Amit Sharma ◽  
P. Venkata Subba Reddy

For a simple, undirected graph [Formula: see text], a function [Formula: see text] which satisfies the following conditions is called an outer-independent total Roman dominating function (OITRDF) of [Formula: see text] with weight [Formula: see text]. (C1) For all [Formula: see text] with [Formula: see text] there exists a vertex [Formula: see text] such that [Formula: see text] and [Formula: see text], (C2) The induced subgraph with vertex set [Formula: see text] has no isolated vertices and (C3) The induced subgraph with vertex set [Formula: see text] is independent. For a graph [Formula: see text], the smallest possible weight of an OITRDF of [Formula: see text] which is denoted by [Formula: see text], is known as the outer-independent total Roman domination number of [Formula: see text]. The problem of determining [Formula: see text] of a graph [Formula: see text] is called minimum outer-independent total Roman domination problem (MOITRDP). In this article, we show that the problem of deciding if [Formula: see text] has an OITRDF of weight at most [Formula: see text] for bipartite graphs and split graphs, a subclass of chordal graphs is NP-complete. We also show that MOITRDP is linear time solvable for connected threshold graphs and bounded treewidth graphs. Finally, we show that the domination and outer-independent total Roman domination problems are not equivalent in computational complexity aspects.


2019 ◽  
Vol 263 ◽  
pp. 257-270 ◽  
Author(s):  
Magdalena Valveny ◽  
Hebert Pérez-Rosés ◽  
Juan A. Rodríguez-Velázquez

2018 ◽  
Vol 11 (03) ◽  
pp. 1850034 ◽  
Author(s):  
J. Amjadi ◽  
M. Soroudi

Let [Formula: see text] be a finite simple digraph with vertex set [Formula: see text] and arc set [Formula: see text]. A twin signed total Roman dominating function (TSTRDF) on the digraph [Formula: see text] is a function [Formula: see text] satisfying the conditions that (i) [Formula: see text] and [Formula: see text] for each [Formula: see text], where [Formula: see text] (respectively [Formula: see text]) consists of all in-neighbors (respectively out-neighbors) of [Formula: see text], and (ii) every vertex [Formula: see text] for which [Formula: see text] has an in-neighbor [Formula: see text] and an out-neighbor [Formula: see text] with [Formula: see text]. The weight of an TSTRDF [Formula: see text] is [Formula: see text]. The twin signed total Roman domination number [Formula: see text] of [Formula: see text] is the minimum weight of an TSTRDF on [Formula: see text]. In this paper, we initiate the study of twin signed total Roman domination in digraphs and we present some sharp bounds on [Formula: see text]. In addition, we determine the twin signed Roman domination number of some classes of digraphs.


2015 ◽  
Vol 07 (04) ◽  
pp. 1550048 ◽  
Author(s):  
Mustapha Chellali ◽  
Nader Jafari Rad

A Roman dominating function (RDF) on a graph [Formula: see text] is a function [Formula: see text] satisfying the condition that every vertex [Formula: see text] for which [Formula: see text] is adjacent to at least one vertex [Formula: see text] for which [Formula: see text]. The weight of a RDF [Formula: see text] is the value [Formula: see text]. The Roman domination number, [Formula: see text], of [Formula: see text] is the minimum weight of a RDF on [Formula: see text]. An RDF [Formula: see text] is called an independent Roman dominating function (IRDF) if the set [Formula: see text] is an independent set. The independent Roman domination number, [Formula: see text], is the minimum weight of an IRDF on [Formula: see text]. In this paper, we study trees with independent Roman domination number twice their independent domination number, answering an open question.


Author(s):  
Hossein Abdollahzadeh Ahangar ◽  
Jafar Amjadi ◽  
Mustapha Chellali ◽  
S. Kosari ◽  
Vladimir Samodivkin ◽  
...  

Let $G=(V,E)$ be a simple graph with vertex set $V$ and edge set $E$. A mixed Roman dominating function (MRDF) of $G$ is a function $f:V\cup E\rightarrow \{0,1,2\}$ satisfying the condition that every element $x\in V\cup E$ for which $f(x)=0$ is adjacent or incident to at least one element $% y\in V\cup E$ for which $f(y)=2$. The weight of a mixed Roman dominating function $f$ is $\omega (f)=\sum_{x\in V\cup E}f(x)$. The mixed Roman domination number $\gamma _{R}^{\ast }(G)$ of $G$ is the minimum weight of a mixed Roman dominating function of $G$. We first show that the problem of computing $\gamma _{R}^{\ast }(G)$ is NP-complete for bipartite graphs and then we present upper and lower bounds on the mixed Roman domination number, some of them are for the class of trees.


2016 ◽  
Vol 10 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Mustapha Chellali ◽  
Teresa Haynes ◽  
Stephen Hedetniemi

A Roman dominating function (RDF) on a graph G is a function f : V (G) ? {0,1,2} satisfying the condition that every vertex u with f(u) = 0 is adjacent to at least one vertex v of G for which f(v) = 2. The weight of a Roman dominating function is the sum f(V) = ?v?V f(v), and the minimum weight of a Roman dominating function f is the Roman domination number ?R(G). An RDF f is called an independent Roman dominating function (IRDF) if the set of vertices assigned positive values under f is independent. The independent Roman domination number iR(G) is the minimum weight of an IRDF on G. We show that for every nontrivial connected graph G with maximum degree ?, ?R(G)? ?+1/??(G) and iR(G) ? i(G) + ?(G)/?, where ?(G) and i(G) are, respectively, the domination and independent domination numbers of G. Moreover, we characterize the connected graphs attaining each lower bound. We give an additional lower bound for ?R(G) and compare our two new bounds on ?R(G) with some known lower bounds.


2018 ◽  
Vol 10 (02) ◽  
pp. 1850020 ◽  
Author(s):  
J. Amjadi

Let [Formula: see text] be a finite simple digraph with vertex set [Formula: see text]. A signed total Roman dominating function (STRDF) on a digraph [Formula: see text] is a function [Formula: see text] such that (i) [Formula: see text] for every [Formula: see text], where [Formula: see text] consists of all inner neighbors of [Formula: see text], and (ii) every vertex [Formula: see text] for which [Formula: see text] has an inner neighbor [Formula: see text] for which [Formula: see text]. The weight of an STRDF [Formula: see text] is [Formula: see text]. The signed total Roman domination number [Formula: see text] of [Formula: see text] is the minimum weight of an STRDF on [Formula: see text]. A set [Formula: see text] of distinct STRDFs on [Formula: see text] with the property that [Formula: see text] for each [Formula: see text] is called a signed total Roman dominating family (STRD family) (of functions) on [Formula: see text]. The maximum number of functions in an STRD family on [Formula: see text] is the signed total Roman domatic number of [Formula: see text], denoted by [Formula: see text]. In this paper, we initiate the study of signed total Roman domatic number in digraphs and we present some sharp bounds for [Formula: see text]. In addition, we determine the signed total Roman domatic number of some classes of digraphs.


2018 ◽  
Vol 10 (04) ◽  
pp. 1850052
Author(s):  
J. Amjadi ◽  
S. M. Sheikholeslami ◽  
M. Valinavaz ◽  
N. Dehgardi

Let [Formula: see text] be a simple graph with vertex set [Formula: see text] and edge set [Formula: see text]. A Roman dominating function on a graph [Formula: see text] is a function [Formula: see text] satisfying the condition that every vertex [Formula: see text] for which [Formula: see text] is adjacent to at least one vertex [Formula: see text] for which [Formula: see text]. A Roman dominating function [Formula: see text] is called an independent Roman dominating function if the set of all vertices with positive weights is an independent set. The weight of an independent Roman dominating function [Formula: see text] is the value [Formula: see text]. The independent Roman domination number of [Formula: see text], denoted by [Formula: see text], is the minimum weight of an independent Roman dominating function on [Formula: see text]. A subset [Formula: see text] of [Formula: see text] is a 2-independent set of [Formula: see text] if every vertex of [Formula: see text] has at most one neighbor in [Formula: see text]. The maximum cardinality of a 2-independent set of [Formula: see text] is the 2-independence number [Formula: see text]. These two parameters are incomparable in general, however, we show that for any tree [Formula: see text], [Formula: see text] and we characterize all trees attaining the equality.


Sign in / Sign up

Export Citation Format

Share Document