scholarly journals On Kakeya Conditions for Achievement Sets

2021 ◽  
Vol 76 (4) ◽  
Author(s):  
Jacek Marchwicki ◽  
Piotr Miska

AbstractWe prove that for each infinite subset C of $${\mathbb {N}}$$ N there exists a sequence $$(x_n)$$ ( x n ) such that $$\{n: x_n>r_n\}=C$$ { n : x n > r n } = C and the achievement set $$A(x_n)$$ A ( x n ) is a Cantor set. Moreover, we show that it is possible to construct a sequence $$(x_n)$$ ( x n ) such that the set $$\{n: x_n>r_n\}$$ { n : x n > r n } has asymptotic density $$\alpha $$ α for each $$\alpha \in [0,1)$$ α ∈ [ 0 , 1 ) and $$A(x_n)$$ A ( x n ) is a Cantorval.

1993 ◽  
Vol 58 (1) ◽  
pp. 42-54 ◽  
Author(s):  
J. Cichoń ◽  
A. Rosłanowski ◽  
J. Steprans ◽  
B. Wȩglorz

AbstractBy ℬ2 we denote the σ-ideal of all subsets A of the Cantor set {0, 1}ω such that for every infinite subset T of ω the restriction A∣{0, 1}T is a proper subset of {0, 1}T. In this paper we investigate set theoretical properties of this and similar ideals.


2017 ◽  
Vol 28 (10) ◽  
pp. 1750073 ◽  
Author(s):  
Thierry Giordano ◽  
Daniel Gonçalves ◽  
Charles Starling

Let [Formula: see text] and [Formula: see text] be open subsets of the Cantor set with nonempty disjoint complements, and let [Formula: see text] be a homeomorphism with dense orbits. Building on the ideas of Herman, Putnam and Skau, we show that the partial action induced by [Formula: see text] can be realized as the Vershik map on an ordered Bratteli diagram, and that any two such diagrams are equivalent.


2021 ◽  
Vol 71 (3) ◽  
pp. 595-614
Author(s):  
Ram Krishna Pandey ◽  
Neha Rai

Abstract For a given set M of positive integers, a well-known problem of Motzkin asks to determine the maximal asymptotic density of M-sets, denoted by μ(M), where an M-set is a set of non-negative integers in which no two elements differ by an element in M. In 1973, Cantor and Gordon find μ(M) for |M| ≤ 2. Partial results are known in the case |M| ≥ 3 including some results in the case when M is an infinite set. Motivated by some 3 and 4-element families already discussed by Liu and Zhu in 2004, we study μ(M) for two families namely, M = {a, b,a + b, n(a + b)} and M = {a, b, b − a, n(b − a)}. For both of these families, we find some exact values and some bounds on μ(M). This number theory problem is also related to various types of coloring problems of the distance graphs generated by M. So, as an application, we also study these coloring parameters associated with these families.


Author(s):  
Simon Baker

Abstract A well-known theorem due to Koksma states that for Lebesgue almost every $x>1$ the sequence $(x^n)_{n=1}^{\infty }$ is uniformly distributed modulo one. In this paper, we give sufficient conditions for an analogue of this theorem to hold for a self-similar measure. Our approach applies more generally to sequences of the form $(f_{n}(x))_{n=1}^{\infty }$ where $(f_n)_{n=1}^{\infty }$ is a sequence of sufficiently smooth real-valued functions satisfying some nonlinearity conditions. As a corollary of our main result, we show that if $C$ is equal to the middle 3rd Cantor set and $t\geq 1$, then with respect to the natural measure on $C+t,$ for almost every $x$, the sequence $(x^n)_{n=1}^{\infty }$ is uniformly distributed modulo one.


2004 ◽  
Vol 04 (01) ◽  
pp. 63-76 ◽  
Author(s):  
OLIVER JENKINSON

Given a non-empty finite subset A of the natural numbers, let EA denote the set of irrationals x∈[0,1] whose continued fraction digits lie in A. In general, EA is a Cantor set whose Hausdorff dimension dim (EA) is between 0 and 1. It is shown that the set [Formula: see text] intersects [0,1/2] densely. We then describe a method for accurately computing dimensions dim (EA), and employ it to investigate numerically the way in which [Formula: see text] intersects [1/2,1]. These computations tend to support the conjecture, first formulated independently by Hensley, and by Mauldin & Urbański, that [Formula: see text] is dense in [0,1]. In the important special case A={1,2}, we use our computational method to give an accurate approximation of dim (E{1,2}), improving on the one given in [18].


2019 ◽  
Vol 2019 (746) ◽  
pp. 149-170
Author(s):  
Pekka Pankka ◽  
Juan Souto

Abstract We prove that Kleinian groups whose limit sets are Cantor sets of Hausdorff dimension < 1 are free. On the other hand we construct for any ε > 0 an example of a non-free purely hyperbolic Kleinian group whose limit set is a Cantor set of Hausdorff dimension < 1 + ε.


2008 ◽  
Vol 28 (5) ◽  
pp. 1509-1531 ◽  
Author(s):  
THIERRY GIORDANO ◽  
HIROKI MATUI ◽  
IAN F. PUTNAM ◽  
CHRISTIAN F. SKAU

AbstractWe prove a result about extension of a minimal AF-equivalence relation R on the Cantor set X, the extension being ‘small’ in the sense that we modify R on a thin closed subset Y of X. We show that the resulting extended equivalence relation S is orbit equivalent to the original R, and so, in particular, S is affable. Even in the simplest case—when Y is a finite set—this result is highly non-trivial. The result itself—called the absorption theorem—is a powerful and crucial tool for the study of the orbit structure of minimal ℤn-actions on the Cantor set, see Remark 4.8. The absorption theorem is a significant generalization of the main theorem proved in Giordano et al [Affable equivalence relations and orbit structure of Cantor dynamical systems. Ergod. Th. & Dynam. Sys.24 (2004), 441–475] . However, we shall need a few key results from the above paper in order to prove the absorption theorem.


2001 ◽  
Vol 28 (6) ◽  
pp. 367-373 ◽  
Author(s):  
C. Ganatsiou

We investigate some properties connected with the alternating Lüroth-type series representations for real numbers, in terms of the integer digits involved. In particular, we establish the analogous concept of the asymptotic density and the distribution of the maximum of the firstndenominators, by applying appropriate limit theorems.


1997 ◽  
Vol 70 (1) ◽  
pp. 57 ◽  
Author(s):  
Melissa Richey
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document