Topology on the unitary dual of completely solvable Lie groups

2015 ◽  
Vol 6 (4) ◽  
Author(s):  
Detlev Poguntke

AbstractIt was one of great successes of Kirillov's orbit method to see that the unitary dual of an exponential Lie group is in bijective correspondence with the orbit space associated with the linear dual of the Lie algebra of the group in question. To show that this correspondence is an homeomorphism turned out to be unexpectedly difficult. Only in 1994 H. Leptin and J. Ludwig gave a proof using the notion of variable groups. In this article their proof in the case of completely solvable Lie group is reorganized, some “philosophy” and some new arguments are added. The purpose is to contribute to a better understanding of this proof.

Author(s):  
Jorge Lauret ◽  
Cynthia E Will

Abstract We study the natural functional $F=\frac {\operatorname {scal}^2}{|\operatorname {Ric}|^2}$ on the space of all non-flat left-invariant metrics on all solvable Lie groups of a given dimension $n$. As an application of properties of the beta operator, we obtain that solvsolitons are the only global maxima of $F$ restricted to the set of all left-invariant metrics on a given unimodular solvable Lie group, and beyond the unimodular case, we obtain the same result for almost-abelian Lie groups. Many other aspects of the behavior of $F$ are clarified.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jonas Deré ◽  
Marcos Origlia

Abstract Every simply connected and connected solvable Lie group 𝐺 admits a simply transitive action on a nilpotent Lie group 𝐻 via affine transformations. Although the existence is guaranteed, not much is known about which Lie groups 𝐺 can act simply transitively on which Lie groups 𝐻. So far, the focus was mainly on the case where 𝐺 is also nilpotent, leading to a characterization depending only on the corresponding Lie algebras and related to the notion of post-Lie algebra structures. This paper studies two different aspects of this problem. First, we give a method to check whether a given action ρ : G → Aff ⁡ ( H ) \rho\colon G\to\operatorname{Aff}(H) is simply transitive by looking only at the induced morphism φ : g → aff ⁡ ( h ) \varphi\colon\mathfrak{g}\to\operatorname{aff}(\mathfrak{h}) between the corresponding Lie algebras. Secondly, we show how to check whether a given solvable Lie group 𝐺 acts simply transitively on a given nilpotent Lie group 𝐻, again by studying properties of the corresponding Lie algebras. The main tool for both methods is the semisimple splitting of a solvable Lie algebra and its relation to the algebraic hull, which we also define on the level of Lie algebras. As an application, we give a full description of the possibilities for simply transitive actions up to dimension 4.


1997 ◽  
Vol Vol. 1 ◽  
Author(s):  
Yuri L. Sachkov

International audience The aim of this paper is to present some recent results on controllability of right-invariant systems on Lie groups. From the Lie-theoretical point of view, we study conditions under which subsemigroups generated by half-planes in the Lie algebra of a Lie group coincide with the whole Lie group.


2008 ◽  
Vol 78 (2) ◽  
pp. 301-316
Author(s):  
DETLEV POGUNTKE

AbstractA nine-dimensional exponential Lie group G and a linear form ℓ on the Lie algebra of G are presented such that for all Pukanszky polarizations 𝔭 at ℓ the canonically associated unitary representation ρ=ρ(ℓ,𝔭) of G has the property that ρ(ℒ1(G)) does not contain any nonzero operator given by a compactly supported kernel function. This example shows that one of Leptin’s results is wrong, and it cannot be repaired.


2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Ameer Al-Abayechi ◽  
Ágota Figula

AbstractIn this paper we deal with the class $$\mathcal {C}$$ C of decomposable solvable Lie groups having dimension six. We determine those Lie groups in $$\mathcal {C}$$ C and their subgroups which are the multiplication groups Mult(L) and the inner mapping groups Inn(L) for three-dimensional connected simply connected topological loops L. This result completes the classification of the at most 6-dimensional solvable multiplication Lie groups of the loops L. Moreover, we obtain that every at most 3-dimensional connected topological proper loop having a solvable Lie group of dimension at most six as its multiplication group is centrally nilpotent of class two.


1998 ◽  
Vol 41 (3) ◽  
pp. 368-373 ◽  
Author(s):  
Martin Moskowitz ◽  
Michael Wüstner

AbstractIn this article, making use of the second author’s criterion for exponentiality of a connected solvable Lie group, we give a rather simple necessary and sufficient condition for the semidirect product of a torus acting on certain connected solvable Lie groups to be exponential.


Author(s):  
A. L. Carey ◽  
W. Moran

AbstractLet G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.


2016 ◽  
Vol 08 (02) ◽  
pp. 273-285 ◽  
Author(s):  
Hisashi Kasuya

For a lattice [Formula: see text] of a simply connected solvable Lie group [Formula: see text], we describe the analytic germ in the variety of representations of [Formula: see text] at the trivial representation as an analytic germ which is linearly embedded in the analytic germ associated with the nilpotent Lie algebra determined by [Formula: see text]. By this description, under certain assumption, we study the singularity of the analytic germ in the variety of representations of [Formula: see text] at the trivial representation by using the Kuranishi space construction. By a similar technique, we also study deformations of holomorphic structures of trivial vector bundles over complex parallelizable solvmanifolds.


2019 ◽  
Vol 31 (4) ◽  
pp. 815-842
Author(s):  
Luiz A. B. San Martin ◽  
Laercio J. Santos

Abstract Let G be a noncompact semi-simple Lie group with Iwasawa decomposition {G=KAN} . For a semigroup {S\subset G} with nonempty interior we find a domain of convergence of the Helgason–Laplace transform {I_{S}(\lambda,u)=\int_{S}e^{\lambda(\mathsf{a}(g,u))}\,dg} , where dg is the Haar measure of G, {u\in K} , {\lambda\in\mathfrak{a}^{\ast}} , {\mathfrak{a}} is the Lie algebra of A and {gu=ke^{\mathsf{a}(g,u)}n\in KAN} . The domain is given in terms of a flag manifold of G written {\mathbb{F}_{\Theta(S)}} called the flag type of S, where {\Theta(S)} is a subset of the simple system of roots. It is proved that {I_{S}(\lambda,u)<\infty} if λ belongs to a convex cone defined from {\Theta(S)} and {u\in\pi^{-1}(\mathcal{D}_{\Theta(S)}(S))} , where {\mathcal{D}_{\Theta(S)}(S)\subset\mathbb{F}_{\Theta(S)}} is a B-convex set and {\pi:K\rightarrow\mathbb{F}_{\Theta(S)}} is the natural projection. We prove differentiability of {I_{S}(\lambda,u)} and apply the results to construct of a Riemannian metric in {\mathcal{D}_{\Theta(S)}(S)} invariant by the group {S\cap S^{-1}} of units of S.


Author(s):  
Tobias Diez ◽  
Bas Janssens ◽  
Karl-Hermann Neeb ◽  
Cornelia Vizman

Abstract Let $M$ be a manifold with a closed, integral $(k+1)$-form $\omega $, and let $G$ be a Fréchet–Lie group acting on $(M,\omega )$. As a generalization of the Kostant–Souriau extension for symplectic manifolds, we consider a canonical class of central extensions of ${\mathfrak{g}}$ by ${\mathbb{R}}$, indexed by $H^{k-1}(M,{\mathbb{R}})^*$. We show that the image of $H_{k-1}(M,{\mathbb{Z}})$ in $H^{k-1}(M,{\mathbb{R}})^*$ corresponds to a lattice of Lie algebra extensions that integrate to smooth central extensions of $G$ by the circle group ${\mathbb{T}}$. The idea is to represent a class in $H_{k-1}(M,{\mathbb{Z}})$ by a weighted submanifold $(S,\beta )$, where $\beta $ is a closed, integral form on $S$. We use transgression of differential characters from $ S$ and $ M $ to the mapping space $ C^\infty (S, M) $ and apply the Kostant–Souriau construction on $ C^\infty (S, M) $.


Sign in / Sign up

Export Citation Format

Share Document