scholarly journals Rank and border rank of Kronecker powers of tensors and Strassen's laser method

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Austin Conner ◽  
Fulvio Gesmundo ◽  
Joseph M. Landsberg ◽  
Emanuele Ventura

AbstractWe prove that the border rank of the Kronecker square of the little Coppersmith–Winograd tensor $$T_{cw,q}$$ T c w , q is the square of its border rank for $$q > 2$$ q > 2 and that the border rank of its Kronecker cube is the cube of its border rank for $$q > 4$$ q > 4 . This answers questions raised implicitly by Coppersmith & Winograd (1990, §11) and explicitly by Bläser (2013, Problem 9.8) and rules out the possibility of proving new upper bounds on the exponent of matrix multiplication using the square or cube of a little Coppersmith–Winograd tensor in this range.In the positive direction, we enlarge the list of explicit tensors potentially useful for Strassen's laser method, introducing a skew-symmetric version of the Coppersmith–Winograd tensor, $$T_{skewcw,q}$$ T s k e w c w , q . For $$q = 2$$ q = 2 , the Kronecker square of this tensor coincides with the $$3\times 3$$ 3 × 3 determinant polynomial, $$\det_{3} \in \mathbb{C}^{9} \otimes \mathbb{C}^{9} \otimes \mathbb{C}^{9}$$ det 3 ∈ C 9 ⊗ C 9 ⊗ C 9 , regarded as a tensor. We show that this tensor could potentially be used to show that the exponent of matrix multiplication is two.We determine new upper bounds for the (Waring) rank and the (Waring) border rank of $$\det_3$$ det 3 , exhibiting a strict submultiplicative behaviour for $$T_{skewcw,2}$$ T s k e w c w , 2 which is promising for the laser method.We establish general results regarding border ranks of Kronecker powers of tensors, and make a detailed study of Kronecker squares of tensors in $$\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$$ C 3 ⊗ C 3 ⊗ C 3 .

2016 ◽  
Vol 26 (3) ◽  
pp. 275-286 ◽  
Author(s):  
J. M. Landsberg ◽  
Nicholas Ryder

2017 ◽  
Vol 5 ◽  
Author(s):  
ERIC NASLUND ◽  
WILL SAWIN

A collection of $k$ sets is said to form a $k$-sunflower, or $\unicode[STIX]{x1D6E5}$-system, if the intersection of any two sets from the collection is the same, and we call a family of sets ${\mathcal{F}}$sunflower-free if it contains no $3$-sunflowers. Following the recent breakthrough of Ellenberg and Gijswijt (‘On large subsets of $\mathbb{F}_{q}^{n}$ with no three-term arithmetic progression’, Ann. of Math. (2) 185 (2017), 339–343); (‘Progression-free sets in $\mathbb{Z}_{4}^{n}$ are exponentially small’, Ann. of Math. (2) 185 (2017), 331–337) we apply the polynomial method directly to Erdős–Szemerédi sunflower problem (Erdős and Szemerédi, ‘Combinatorial properties of systems of sets’, J. Combin. Theory Ser. A 24 (1978), 308–313) and prove that any sunflower-free family ${\mathcal{F}}$ of subsets of $\{1,2,\ldots ,n\}$ has size at most $$\begin{eqnarray}|{\mathcal{F}}|\leqslant 3n\mathop{\sum }_{k\leqslant n/3}\binom{n}{k}\leqslant \left(\frac{3}{2^{2/3}}\right)^{n(1+o(1))}.\end{eqnarray}$$ We say that a set $A\subset (\mathbb{Z}/D\mathbb{Z})^{n}=\{1,2,\ldots ,D\}^{n}$ for $D>2$ is sunflower-free if for every distinct triple $x,y,z\in A$ there exists a coordinate $i$ where exactly two of $x_{i},y_{i},z_{i}$ are equal. Using a version of the polynomial method with characters $\unicode[STIX]{x1D712}:\mathbb{Z}/D\mathbb{Z}\rightarrow \mathbb{C}$ instead of polynomials, we show that any sunflower-free set $A\subset (\mathbb{Z}/D\mathbb{Z})^{n}$ has size $$\begin{eqnarray}|A|\leqslant c_{D}^{n}\end{eqnarray}$$ where $c_{D}=\frac{3}{2^{2/3}}(D-1)^{2/3}$. This can be seen as making further progress on a possible approach to proving the Erdős and Rado sunflower conjecture (‘Intersection theorems for systems of sets’,J. Lond. Math. Soc. (2) 35 (1960), 85–90), which by the work of Alon et al. (‘On sunflowers and matrix multiplication’, Comput. Complexity22 (2013), 219–243; Theorem 2.6) is equivalent to proving that $c_{D}\leqslant C$ for some constant $C$ independent of $D$.


10.37236/5697 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
János Csányi ◽  
Peter Hajnal ◽  
Gábor V. Nagy

In a 2011 paper, Gyárfás investigated a geometric Ramsey problem on convex, separated, balanced, geometric $K_{n,n}$. This led to appealing extremal problem on square 0-1 matrices. Gyárfás conjectured that any 0-1 matrix of size $n\times n$ has a staircase of size $n-1$.We introduce the non-symmetric version of Gyárfás' problem. We give upper bounds and in certain range matching lower bound on the corresponding extremal function. In the square/balanced case we improve the $(4/5+\epsilon)n$ lower bound of Cai, Gyárfás et al. to $5n/6-7/12$. We settle the problem when instead of considering maximum staircases we deal with the sum of the size of the longest $0$- and $1$-staircases.


2014 ◽  
Vol 4 (1) ◽  
pp. 1-11
Author(s):  
Keivan Borna ◽  
Sohrab Fard

AbstractWe present a practical algorithm for multiplication of two sparse matrices. In fact if A and B are two matrices of size n with m 1 and m 2 non-zero elements respectively, then our algorithm performs O(min{m 1 n, m 2 n, m 1 m 2}) multiplications and O(k) additions where k is the number of non-zero elements in the tiny matrices that are obtained by the columns times rows matrix multiplication method. Note that in the useful case, k ≤ m 2 n. However, in Proposition 3.3 and Proposition 3.4 we obtain tight upper bounds for the complexity of additions. We also study the complexity of multiplication in a practical case where non-zero elements of A (resp. B) are distributed independently with uniform distribution among columns (resp. rows) of them and show that the expected number of multiplications is O(m 1 m 2/n). Finally a comparison of number of required multiplications in the naïve matrix multiplication, Strassen’s method and our algorithm is given.


2001 ◽  
Vol 6 (1) ◽  
pp. 26-35 ◽  
Author(s):  
Marja Kokkonen ◽  
Lea Pulkkinen ◽  
Taru Kinnunen

The study was part of the Jyväskylä Longitudinal Study of Personality and Social Development, underway since 1968, in which children's low self-control of emotions was studied using teacher ratings at age 8 in terms of inattentiveness, shifting moods, aggression, and anxiety. The study was based on data from 112 women and 112 men who participated in the previous data collections at ages 8, 27, and 36. At age 27, the participants had been assessed in Neuroticism (N) using the Eysenck Personality Questionnaire , and at age 36 they filled in several inventories measuring, among others, conscious and active attempts to repair negative emotions in a more positive direction as well as physical symptoms. The present study used structural equation modeling to test the hypothesis that personality characteristics indicating low self-control of emotions at ages 8 and 27 are antecedents of self-reported physical symptoms at age 36; and that this relationship is indirect, mediated by attempts to repair negative emotions in a more positive direction. The findings showed, albeit for men only, that inattentiveness at age 8 was positively related to self-reported physical symptoms at age 36 via high N at age 27 and low attempts to repair negative emotions at age 36. Additionally, N at age 27 was directly linked to self-reported physical symptoms at age 36. The mediation of an active attempt to repair negative emotions was not found for women. Correlations revealed, however, that shifting moods and aggression in girls were antecedents of self-reported physical symptoms in adulthood, particularly, pain and fatigue.


Sign in / Sign up

Export Citation Format

Share Document