scholarly journals UPPER BOUNDS FOR SUNFLOWER-FREE SETS

2017 ◽  
Vol 5 ◽  
Author(s):  
ERIC NASLUND ◽  
WILL SAWIN

A collection of $k$ sets is said to form a $k$-sunflower, or $\unicode[STIX]{x1D6E5}$-system, if the intersection of any two sets from the collection is the same, and we call a family of sets ${\mathcal{F}}$sunflower-free if it contains no $3$-sunflowers. Following the recent breakthrough of Ellenberg and Gijswijt (‘On large subsets of $\mathbb{F}_{q}^{n}$ with no three-term arithmetic progression’, Ann. of Math. (2) 185 (2017), 339–343); (‘Progression-free sets in $\mathbb{Z}_{4}^{n}$ are exponentially small’, Ann. of Math. (2) 185 (2017), 331–337) we apply the polynomial method directly to Erdős–Szemerédi sunflower problem (Erdős and Szemerédi, ‘Combinatorial properties of systems of sets’, J. Combin. Theory Ser. A 24 (1978), 308–313) and prove that any sunflower-free family ${\mathcal{F}}$ of subsets of $\{1,2,\ldots ,n\}$ has size at most $$\begin{eqnarray}|{\mathcal{F}}|\leqslant 3n\mathop{\sum }_{k\leqslant n/3}\binom{n}{k}\leqslant \left(\frac{3}{2^{2/3}}\right)^{n(1+o(1))}.\end{eqnarray}$$ We say that a set $A\subset (\mathbb{Z}/D\mathbb{Z})^{n}=\{1,2,\ldots ,D\}^{n}$ for $D>2$ is sunflower-free if for every distinct triple $x,y,z\in A$ there exists a coordinate $i$ where exactly two of $x_{i},y_{i},z_{i}$ are equal. Using a version of the polynomial method with characters $\unicode[STIX]{x1D712}:\mathbb{Z}/D\mathbb{Z}\rightarrow \mathbb{C}$ instead of polynomials, we show that any sunflower-free set $A\subset (\mathbb{Z}/D\mathbb{Z})^{n}$ has size $$\begin{eqnarray}|A|\leqslant c_{D}^{n}\end{eqnarray}$$ where $c_{D}=\frac{3}{2^{2/3}}(D-1)^{2/3}$. This can be seen as making further progress on a possible approach to proving the Erdős and Rado sunflower conjecture (‘Intersection theorems for systems of sets’,J. Lond. Math. Soc. (2) 35 (1960), 85–90), which by the work of Alon et al. (‘On sunflowers and matrix multiplication’, Comput. Complexity22 (2013), 219–243; Theorem 2.6) is equivalent to proving that $c_{D}\leqslant C$ for some constant $C$ independent of $D$.

1972 ◽  
Vol 7 (2) ◽  
pp. 317-318 ◽  
Author(s):  
Anne Penfold Street

The last step of the proof in [2] was omitted. To complete the argument, we proceed in the following way. We had shown that H = H(S) = H(S+S) = H(S-S), that |S-S| = 2|S| - |H| and hence that in the factor group G* = G/H of order 3m, the maximal sum-free set S* = S/H and its set of differences S* - S* are aperiodic, withso thatBy (1) and Theorem 2.1 of [1], S* - S* is either quasiperiodic or in arithmetic progression.


Author(s):  
C. N. Linden ◽  
M. L. Cartwright

Letbe a function regular for | z | < 1. With the hypotheses f(0) = 0 andfor some positive constant α, Cartwright(1) has deduced upper bounds for |f(z) | in the unit circle. Three cases have arisen and according as (1) holds with α < 1, α = 1 or α > 1, the bounds on each circle | z | = r are given respectively byK(α) being a constant which depends only on the corresponding value of α which occurs in (1). We shall always use the symbols K and A to represent constants dependent on certain parameters such as α, not necessarily having the same value at each occurrence.


1999 ◽  
Vol 8 (3) ◽  
pp. 277-280 ◽  
Author(s):  
TOMASZ SCHOEN
Keyword(s):  
Free Set ◽  

A set A is called universal sum-free if, for every finite 0–1 sequence χ = (e1, …, en), either(i) there exist i, j, where 1[les ]j<i[les ]n, such that ei = ej = 1 and i − j∈A, or(ii) there exists t∈N such that, for 1[les ]i[les ]n, we have t + i∈A if and only if ei = 1.It is proved that the density of each universal sum-free set is zero, which settles a problem of Cameron.


1962 ◽  
Vol 14 ◽  
pp. 540-551 ◽  
Author(s):  
W. C. Royster

Let Σ represent the class of analytic functions(1)which are regular, except for a simple pole at infinity, and univalent in |z| > 1 and map |z| > 1 onto a domain whose complement is starlike with respect to the origin. Further let Σ- 1 be the class of inverse functions of Σ which at w = ∞ have the expansion(2).In this paper we develop variational formulas for functions of the classes Σ and Σ- 1 and obtain certain properties of functions that extremalize some rather general functionals pertaining to these classes. In particular, we obtain precise upper bounds for |b2| and |b3|. Precise upper bounds for |b1|, |b2| and |b3| are given by Springer (8) for the general univalent case, provided b0 =0.


1970 ◽  
Vol 13 (1) ◽  
pp. 115-118 ◽  
Author(s):  
G. Bruns ◽  
H. Lakser

A (meet-) semilattice is an algebra with one binary operation ∧, which is associative, commutative and idempotent. Throughout this paper we are working in the category of semilattices. All categorical or general algebraic notions are to be understood in this category. In every semilattice S the relationdefines a partial ordering of S. The symbol "∨" denotes least upper bounds under this partial ordering. If it is not clear from the context in which partially ordered set a least upper bound is taken, we add this set as an index to the symbol; for example, ∨AX denotes the least upper bound of X in the partially ordered set A.


1954 ◽  
Vol 50 (2) ◽  
pp. 261-265
Author(s):  
F. Huckemann

1. The conformal mapping of a strip domain in the z-plane on to a parallel strip— parallel, say, to the real axis of the ζ ( = ξ + iμ)-plane—brings about a certain distortion. More precisely: consider a cross-cut on the line ℜz = c joining the two sides of the frontier of the strip domain (in these introductory remarks we suppose for simplicity that there is only one such cross-cut on that line), and denote by ξ1(c) and ξ2(c) the lower and upper bounds of ξ on the image in the ζ-plane. The theorem of Ahlfors (1), now classical, states thatprovided thatwhere a is the width of the parallel strip and θ(c) the length of the cross-cut.


1975 ◽  
Vol 13 (3) ◽  
pp. 337-342 ◽  
Author(s):  
H.P. Yap

Let λ(G) be the cardinality of a maximal sum-free set in a group G. Diananda and Yap conjectured that if G is abelian and if every prime divisor of |G| is congruent to 1 modulo 3, then λ(G) = |G|(n−1)/3n where n is the exponent of G. This conjecture has been proved to be true for elementary abelian p−groups by Rhemtulla and Street ana for groups by Yap. We now prove this conjecture for groups G = Zpq ⊕ Zp where p and q are distinct primes.


2012 ◽  
Vol 29 (3) ◽  
pp. 642-658 ◽  
Author(s):  
Benedikt M. Pötscher

Upper and lower bounds on the order of magnitude of $\sum\nolimits_{t = 1}^n {\lefttnq#x007C; {x_t } \righttnq#x007C;^{ - \alpha } } $, where xt is an integrated process, are obtained. Furthermore, upper bounds for the order of magnitude of the related quantity $\sum\nolimits_{t = 1}^n {v_t } \lefttnq#x007C; {x_t } \righttnq#x007C;^{ - \alpha } $, where vt are random variables satisfying certain conditions, are also derived.


Sign in / Sign up

Export Citation Format

Share Document