scholarly journals The evidence of temporary social parasitism by Polyrhachis lamellidens (Hymenoptera, Formicidae) in a Camponotus obscuripes colony (Hymenoptera, Formicidae)

2021 ◽  
Author(s):  
H. Iwai ◽  
Y. Kurihara ◽  
N. Kono ◽  
M. Tomita ◽  
K. Arakawa

AbstractPolyrhachis lamellidens is a temporary socially parasitic ant whose new queen utilizes other ant species in the early stages of colony foundation. Field observations and rearing experiments suggest that Camponotus japonicus is a host species of P. lamellidens. It is presumed that Camponotus obscuripes is also a host of P. lamellidens by rearing experiments and field observations; however, there are no records of P. lamellidens workers or brood coexisting in C. obscuripes colonies in field observations, and there is no clear evidence that C. obscuripes is a natural host of P. lamellidens. We conducted detailed field observations, behavioral tests, and rearing experiments to show that C. obscuripes is a host of temporary social parasites. We found colonies with P. lamellidens queens, workers, and larvae intermixed with C. obscuripes workers in the field. Behavioral tests showed that workers of both species in mixed colonies did not attack each other and maintained nestmate recognition ability, which suggests a collaborative nestmate relationship. Furthermore, a rearing experiment confirmed social parasitism by P. lamellidens among C. obscuripes by producing a mixed brood-producing colony. These are the first field and laboratory records of temporary social parasitism involving P. lamellidens and C. obscuripes.

2020 ◽  
Author(s):  
Marek L Borowiec ◽  
Stefan P Cover ◽  
Christian Rabeling

Studying the behavioral and life history transitions from a cooperative, eusocial life history to exploitative social parasitism allows for deciphering the conditions under which changes in behavior and social organization lead to diversification. The Holarctic ant genus Formica is ideally suited for studying the evolution of social parasitism because half of its 178 species are confirmed or suspected social parasites, which includes all three major classes of social parasitism known in ants. However, the life-history transitions associated with the evolution of social parasitism in this genus are largely unexplored. To test competing hypotheses regarding the origins and evolution of social parasitism, we reconstructed the first global phylogeny of Formica ants and representative formicine outgroups. The genus Formica originated in the Old World during the Oligocene (~30 Ma ago) and dispersed multiple times to the New World. Within Formica, the capacity for dependent colony foundation and temporary social parasitism arose once from a facultatively polygynous, independently colony founding ancestor. Within this parasitic clade, dulotic social parasitism evolved once from a facultatively temporary parasitic ancestor that likely practiced colony budding frequently. Permanent social parasitism evolved twice from temporary social parasitic ancestors that rarely practiced colony budding, demonstrating that obligate social parasitism can originate from different facultative parasitic backgrounds in socially polymorphic organisms. In contrast to inquiline ant species in other genera, the high social parasite diversity in Formica likely originated via allopatric speciation, highlighting the diversity of convergent evolutionary trajectories resulting in nearly identical parasitic life history syndromes.


2021 ◽  
Vol 118 (38) ◽  
pp. e2026029118 ◽  
Author(s):  
Marek L. Borowiec ◽  
Stefan P. Cover ◽  
Christian Rabeling

Studying the behavioral and life history transitions from a cooperative, eusocial life history to exploitative social parasitism allows for deciphering the conditions under which changes in behavior and social organization lead to diversification. The Holarctic ant genus Formica is ideally suited for studying the evolution of social parasitism because half of its 172 species are confirmed or suspected social parasites, which includes all three major classes of social parasitism known in ants. However, the life history transitions associated with the evolution of social parasitism in this genus are largely unexplored. To test competing hypotheses regarding the origins and evolution of social parasitism, we reconstructed a global phylogeny of Formica ants. The genus originated in the Old World ∼30 Ma ago and dispersed multiple times to the New World and back. Within Formica, obligate dependent colony-founding behavior arose once from a facultatively polygynous common ancestor practicing independent and facultative dependent colony foundation. Temporary social parasitism likely preceded or arose concurrently with obligate dependent colony founding, and dulotic social parasitism evolved once within the obligate dependent colony-founding clade. Permanent social parasitism evolved twice from temporary social parasitic ancestors that rarely practiced colony budding, demonstrating that obligate social parasitism can originate from a facultative parasitic background in socially polymorphic organisms. In contrast to permanently socially parasitic ants in other genera, the high parasite diversity in Formica likely originated via allopatric speciation, highlighting the diversity of convergent evolutionary trajectories resulting in nearly identical parasitic life history syndromes.


2015 ◽  
Vol 282 (1811) ◽  
pp. 20151111 ◽  
Author(s):  
Dario Patricelli ◽  
Francesca Barbero ◽  
Andrea Occhipinti ◽  
Cinzia M. Bertea ◽  
Simona Bonelli ◽  
...  

Understanding the chemical cues and gene expressions that mediate herbivore–host-plant and parasite–host interactions can elucidate the ecological costs and benefits accruing to different partners in tight-knit community modules, and may reveal unexpected complexities. We investigated the exploitation of sequential hosts by the phytophagous–predaceous butterfly Maculinea arion , whose larvae initially feed on Origanum vulgare flowerheads before switching to parasitize Myrmica ant colonies for their main period of growth. Gravid female butterflies were attracted to Origanum plants that emitted high levels of the monoterpenoid volatile carvacrol, a condition that occurred when ants disturbed their roots: we also found that Origanum expressed four genes involved in monoterpene formation when ants were present, accompanied by a significant induction of jasmonates. When exposed to carvacrol, Myrmica workers upregulated five genes whose products bind and detoxify this biocide, and their colonies were more tolerant of it than other common ant genera, consistent with an observed ability to occupy the competitor-free spaces surrounding Origanum . A cost is potential colony destruction by Ma. arion , which in turn may benefit infested Origanum plants by relieving their roots of further damage. Our results suggest a new pathway, whereby social parasites can detect successive resources by employing plant volatiles to simultaneously select their initial plant food and a suitable sequential host.


2004 ◽  
Vol 82 (12) ◽  
pp. 1843-1853 ◽  
Author(s):  
Anna L Birmingham ◽  
Shelley E Hoover ◽  
Mark L Winston ◽  
Ron C Ydenberg

Commercial greenhouses require high densities of managed bumble bee (Bombus occidentalis Greene, 1858 and Bombus impatiens Cresson, 1863) colonies to pollinate crops such as tomatoes (Lycopersicon esculentum Miller). We examined drifting, a behavioural consequence of introducing closely aggregated colonies into greenhouse habitats, to determine possible explanations for observed drifting frequencies. Bee drift is normally associated with increased individual mortality and disease transfer between colonies. In this study, individual bees frequently drifted into and remained within foreign colonies. More drifting bees were found in colonies with higher worker and brood populations and greater pollen stores. Increased intracolony aggressive interactions were not associated with a higher number of drifting bees. Drifting bees had a significantly greater number of mature eggs in their ovaries than did resident worker bees residing in colonies hosting drifters, suggesting that drifting could potentially increase the fitness of individual worker bees and may not be solely a function of disorientation and (or) nectar robbing. Taken together, our results suggest that drifting of workers into foreign colonies within greenhouses may demonstrate a predisposition to social parasitism. This selfish worker reproduction challenges our previous understanding of social insect societies as being cooperative societies.


2015 ◽  
Vol 2 (9) ◽  
pp. 150159 ◽  
Author(s):  
Federico Lopez-Osorio ◽  
Adrien Perrard ◽  
Kurt M. Pickett ◽  
James M. Carpenter ◽  
Ingi Agnarsson

Social parasites exploit the brood-care behaviour and social structure of one or more host species. Within the social Hymenoptera there are different types of social parasitism. In its extreme form, species of obligate social parasites, or inquilines, do not have the worker caste and depend entirely on the workers of a host species to raise their reproductive offspring. The strict form of Emery's rule states that social parasites share immediate common ancestry with their hosts. Moreover, this rule has been linked with a sympatric origin of inquilines from their hosts. Here, we conduct phylogenetic analyses of yellowjackets and hornets based on 12 gene fragments and evaluate competing evolutionary scenarios to test Emery's rule. We find that inquilines, as well as facultative social parasites, are not the closest relatives of their hosts. Therefore, Emery's rule in its strict sense is rejected, suggesting that social parasites have not evolved sympatrically from their hosts in yellowjackets and hornets. However, the relaxed version of the rule is supported, as inquilines and their hosts belong to the same Dolichovespula clade. Furthermore, inquilinism has evolved only once in Dolichovespula .


Sign in / Sign up

Export Citation Format

Share Document