social parasites
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 24)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 151 ◽  
Author(s):  
Alessandro Fisogni ◽  
Gherardo Bogo ◽  
François Massol ◽  
Laura Bortolotti ◽  
Marta Galloni

Cuckoo bumblebees are a monophyletic group within the genus Bombus and social parasites of free-living bumblebees, upon which they rely to rear their offspring. Cuckoo bumblebees lack the worker caste and visit flowers primarily for their own sustenance and do not collect pollen. Although different flower-visiting behaviours can be expected between cuckoo and free-living bumblebees due to different biological constraints, no study has yet quantified such differences. Here, we provide the first empirical evidence of different flower-visiting behaviours between cuckoo and free-living bumblebees. We recorded the flower-visiting behaviour of 350 individual bumblebees over two years in a wild population of the entomophilous plant Gentiana lutea, of which they are among the main pollinators. In cuckoo bumblebees (28.9% of the total), we only found males, while we found both workers and males in free-living bumblebees. Cuckoo bumblebees visited significantly more flowers for longer time periods than both free-living bumblebee workers and males within whorls, while differences at the whole-plant level were less marked. Free-living bumblebee males visited more flowers and performed slightly longer flower visits than workers. Behavioural differences between cuckoo male bumblebees and free-living bumblebee workers are likely related to different foraging needs, while differences between cuckoo and free-living bumblebee males may be caused by differences in colony development and a delayed mating period of free-living bumblebees. The longer visits made by cuckoo male bumblebees will likely negatively affect plant reproductive success through increased within-plant pollen flow.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1006
Author(s):  
Maria Cristina Lorenzi

Social parasites have evolved adaptations to overcome host resistance as they infiltrate host colonies and establish there. Among the chemical adaptations, a few species are chemically “insignificant”; they are poor in recognition cues (cuticular hydrocarbons) and evade host detection. As cuticular hydrocarbons also serve a waterproofing function, chemical insignificance is beneficial as it protects parasites from being detected but is potentially harmful because it exposes parasites to desiccation stress. Here I tested whether the social parasites Polistes atrimandibularis employ behavioral water-saving strategies when they live at Polistes biglumis colonies. Observations in the field showed that parasites were less active than their cohabiting host foundresses, spent more time at the nest, and rested in the shadowy, back face of the nest, rather than at the front face, which contradicted expectations for the use of space for dominant females—typically, dominants rest at the nest front-face. These data suggest that behavioral adaptations might promote resistance to desiccation stress in chemical insignificant social parasites.


2021 ◽  
Author(s):  
Barbara Feldmeyer ◽  
Claudia Gstoettl ◽  
Jennifer Wallner ◽  
Evelien Jongepier ◽  
Alice Seguret ◽  
...  

The ecological success of social Hymenoptera (ants, bees, wasps) depends on the division of labour between the queen and workers. Each caste is highly specialized in their respective function in morphology, behaviour and life history traits, such as lifespan and fecundity. Despite strong defences against alien intruders, insect societies are vulnerable to social parasites, such as workerless inquilines or slave-making (dulotic) ants. Here, we investigate whether gene expression varies in parallel ways between slave-making ants and their host ants across five independent origins of ant slavery in the Formicoxenus-group of the ant tribe Crematogastrini. As caste differences are often less pronounced in slave-making ants than non-parasitic ants, we also compare the transcriptomes of queens and workers in these species. We demonstrate a substantial overlap in expression differences between queens and workers across taxa, irrespective of lifestyle. Caste affects the transcriptomes much more profoundly than lifestyle, as indicated by 37 times more genes being linked to caste than to lifestyle and by multiple caste-associated gene modules with strong connectivity. However, several genes and one gene module are linked to the slave-making lifestyle across the independent origins, pointing to some evolutionary convergence. Finally, we do not find evidence for an interaction between caste and lifestyle, indicating that caste differences remain consistent even when species switch to a parasitic lifestyle. Our findings are a strong indication for the existence of a core set of genes whose expression is linked to the queen and worker caste in this ant taxon, supporting the genetic-toolkit hypothesis.


2021 ◽  
Vol 118 (38) ◽  
pp. e2026029118 ◽  
Author(s):  
Marek L. Borowiec ◽  
Stefan P. Cover ◽  
Christian Rabeling

Studying the behavioral and life history transitions from a cooperative, eusocial life history to exploitative social parasitism allows for deciphering the conditions under which changes in behavior and social organization lead to diversification. The Holarctic ant genus Formica is ideally suited for studying the evolution of social parasitism because half of its 172 species are confirmed or suspected social parasites, which includes all three major classes of social parasitism known in ants. However, the life history transitions associated with the evolution of social parasitism in this genus are largely unexplored. To test competing hypotheses regarding the origins and evolution of social parasitism, we reconstructed a global phylogeny of Formica ants. The genus originated in the Old World ∼30 Ma ago and dispersed multiple times to the New World and back. Within Formica, obligate dependent colony-founding behavior arose once from a facultatively polygynous common ancestor practicing independent and facultative dependent colony foundation. Temporary social parasitism likely preceded or arose concurrently with obligate dependent colony founding, and dulotic social parasitism evolved once within the obligate dependent colony-founding clade. Permanent social parasitism evolved twice from temporary social parasitic ancestors that rarely practiced colony budding, demonstrating that obligate social parasitism can originate from a facultative parasitic background in socially polymorphic organisms. In contrast to permanently socially parasitic ants in other genera, the high parasite diversity in Formica likely originated via allopatric speciation, highlighting the diversity of convergent evolutionary trajectories resulting in nearly identical parasitic life history syndromes.


2021 ◽  
Author(s):  
H. Iwai ◽  
Y. Kurihara ◽  
N. Kono ◽  
M. Tomita ◽  
K. Arakawa

AbstractPolyrhachis lamellidens is a temporary socially parasitic ant whose new queen utilizes other ant species in the early stages of colony foundation. Field observations and rearing experiments suggest that Camponotus japonicus is a host species of P. lamellidens. It is presumed that Camponotus obscuripes is also a host of P. lamellidens by rearing experiments and field observations; however, there are no records of P. lamellidens workers or brood coexisting in C. obscuripes colonies in field observations, and there is no clear evidence that C. obscuripes is a natural host of P. lamellidens. We conducted detailed field observations, behavioral tests, and rearing experiments to show that C. obscuripes is a host of temporary social parasites. We found colonies with P. lamellidens queens, workers, and larvae intermixed with C. obscuripes workers in the field. Behavioral tests showed that workers of both species in mixed colonies did not attack each other and maintained nestmate recognition ability, which suggests a collaborative nestmate relationship. Furthermore, a rearing experiment confirmed social parasitism by P. lamellidens among C. obscuripes by producing a mixed brood-producing colony. These are the first field and laboratory records of temporary social parasitism involving P. lamellidens and C. obscuripes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Albena Lapeva-Gjonova ◽  
Alexander Radchenko

Strongylognathus Mayr, 1853 is a Palaearctic genus, comprising 25 ant species and one subspecies, all permanent social parasites, infesting colonies of various species of Tetramorium Mayr, 1855. They have patchy distribution throughout their areas and most of them are very rare and listed as vulnerable. The taxonomy of the Strongylognathus huberi group needs thorough revision and the results presented below can be considered as preliminary. Four species of the socially parasitic ant genus Strongylognathus (S. karawajewi Pisarski, 1966, S. huberi dalmaticus Baroni Urbani, 1969, S. afer Emery, 1884 and S. italicus Finzi, 1924) are recorded for the first time from Bulgaria and, together with the previously-known S. testaceus and S. bulgaricus stat. rev., their total number reaches six. The taxonomic position and geographic distribution of all species are discussed and a Key for their identification, based on worker caste, is compiled.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lukas Schrader ◽  
Hailin Pan ◽  
Martin Bollazzi ◽  
Morten Schiøtt ◽  
Fredrick J. Larabee ◽  
...  

AbstractInquiline ants are highly specialized and obligate social parasites that infiltrate and exploit colonies of closely related species. They have evolved many times convergently, are often evolutionarily young lineages, and are almost invariably rare. Focusing on the leaf-cutting ant genus Acromyrmex, we compared genomes of three inquiline social parasites with their free-living, closely-related hosts. The social parasite genomes show distinct signatures of erosion compared to the host lineages, as a consequence of relaxed selective constraints on traits associated with cooperative ant colony life and of inquilines having very small effective population sizes. We find parallel gene losses, particularly in olfactory receptors, consistent with inquiline species having highly reduced social behavioral repertoires. Many of the genomic changes that we uncover resemble those observed in the genomes of obligate non-social parasites and intracellular endosymbionts that branched off into highly specialized, host-dependent niches.


2021 ◽  
Author(s):  
Evelien Jongepier ◽  
Alice Séguret ◽  
Anton Labutin ◽  
Barbara Feldmeyer ◽  
Claudia Gstöttl ◽  
...  

The evolution of an obligate parasitic lifestyle often leads to the reduction of morphological and physiological traits, which may be accompanied by loss of genes and functions. Slave-maker ants are social parasites that exploit the work force of closely related ant species for social behaviours such as brood care and foraging. Recent divergence between these social parasites and their hosts enables comparative studies of gene family evolution. We sequenced the genomes of eight ant species, representing three independent origins of ant slavery. During the evolution of eusociality, chemoreceptor genes multiplied due to the importance of chemical communication in societies. We investigated evolutionary patterns of chemoreceptors in relation to slave-making in ants. We found that slave-maker ant genomes harboured only half as many gustatory receptors as their hosts, potentially mirroring the outsourcing of foraging tasks to host workers. In addition, parasites had fewer odorant receptors and their loss shows patterns of convergence across origins of parasitism, representing a rare case of convergent molecular evolution. This convergent loss of specific odorant receptors suggests that selective deprivation of receptors is adaptive. The 9-exon odorant receptor subfamily, previously linked to social evolution in insects, was significantly enriched for convergent loss across the three origins of slavery in our study, indicating that the transition to social parasitism in ants is accompanied by the loss of receptors that are likely important for mediating eusocial behaviour. Overall, gene loss in slave-maker ants suggests that a switch to a parasitic lifestyle accompanies relaxed selection on chemical perception.


2021 ◽  
Author(s):  
Arthur de Fouchier ◽  
Chloe Leroy ◽  
Abderrahman Khila ◽  
Patrizia d'Ettorre

Brood is critically important in social insect colonies. It carries the colony fitness through delivering future reproductive adults as well as workers that will increase the colony's workforce. Adoption of non-nestmate brood can be a mean to increase colony's workforce but entails the risk of rearing unrelated sexuals or social parasites. For early brood (eggs and L1 larvae), this balance is less positive as young brood need a substantial amount of resource before becoming workers. Thus, it appears beneficial for ant workers to discriminate between nestmate and alien brood using the chemical cues displayed at the brood's surface. However, the chemical signature of ant early brood stages and its use by workers remains understudied. To fill this gap, we investigated the chemical basis of early brood nestmate and cross-species recognition in six Formicoid ants. We also tested the discrimination behaviour of workers in brood retrieval trials. We observed clear species-level cues and discrimination against heterospecific brood. We also found that eggs and most young larvae display a colony signature but that only some species discriminate against non-nestmate eggs and L1 larvae. Interestingly, these species appear to also be those belonging to genera subject to brood parasitism.


2021 ◽  
Vol 50 ◽  
pp. 43-56
Author(s):  
Giulia Scarparo ◽  
Paul Rugman-Jones ◽  
Marco Gebiola ◽  
Andrea Di Giulio ◽  
Quinn S. McFrederick

Sign in / Sign up

Export Citation Format

Share Document