scholarly journals Generalized Heisenberg Groups and Shtern's Question

2004 ◽  
Vol 11 (4) ◽  
pp. 775-782
Author(s):  
M. Megrelishvili

Abstract Let 𝐻(𝑋) := (ℝ × 𝑋) ⋋ 𝑋* be the generalized Heisenberg group induced by a normed space 𝑋. We prove that 𝑋 and 𝑋* are relatively minimal subgroups of 𝐻(𝑋). We show that the group 𝐺 := 𝐻(𝐿4[0, 1]) is reflexively representable but weakly continuous unitary representations of 𝐺 in Hilbert spaces do not separate points of 𝐺. This answers the question of A. Shtern.

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1060
Author(s):  
Enrico Celeghini ◽  
Manuel Gadella ◽  
Mariano A. del del Olmo

We introduce a multi-parameter family of bases in the Hilbert space L2(R) that are associated to a set of Hermite functions, which also serve as a basis for L2(R). The Hermite functions are eigenfunctions of the Fourier transform, a property that is, in some sense, shared by these “generalized Hermite functions”. The construction of these new bases is grounded on some symmetry properties of the real line under translations, dilations and reflexions as well as certain properties of the Fourier transform. We show how these generalized Hermite functions are transformed under the unitary representations of a series of groups, including the Weyl–Heisenberg group and some of their extensions.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Hong-Quan Li ◽  
Peter Sjögren

AbstractIn the Heisenberg group of dimension $$2n+1$$ 2 n + 1 , we consider the sub-Laplacian with a drift in the horizontal coordinates. There is a related measure for which this operator is symmetric. The corresponding Riesz transforms are known to be $$L^p$$ L p bounded with respect to this measure. We prove that the Riesz transforms of order 1 are also of weak type (1, 1), and that this is false for order 3 and above. Further, we consider the related maximal Littlewood–Paley–Stein operators and prove the weak type (1, 1) for those of order 1 and disprove it for higher orders.


2007 ◽  
Vol 50 (4) ◽  
pp. 519-534
Author(s):  
C. Ward Henson ◽  
Yves Raynaud ◽  
Andrew Rizzo

AbstractIt is shown that Schatten p-classes of operators between Hilbert spaces of different (infinite) dimensions have ultrapowers which are (completely) isometric to non-commutative Lp-spaces. On the other hand, these Schatten classes are not themselves isomorphic to non-commutative Lp spaces. As a consequence, the class of non-commutative Lp-spaces is not axiomatizable in the first-order language developed by Henson and Iovino for normed space structures, neither in the signature of Banach spaces, nor in that of operator spaces. Other examples of the same phenomenon are presented that belong to the class of corners of non-commutative Lp-spaces. For p = 1 this last class, which is the same as the class of preduals of ternary rings of operators, is itself axiomatizable in the signature of operator spaces.


2020 ◽  
Vol 10 (03) ◽  
pp. 2050016
Author(s):  
Michael Ruzhansky ◽  
Bolys Sabitbek ◽  
Durvudkhan Suragan

In this paper, we present geometric Hardy inequalities for the sub-Laplacian in half-spaces of stratified groups. As a consequence, we obtain the following geometric Hardy inequality in a half-space of the Heisenberg group with a sharp constant: [Formula: see text] which solves a conjecture in the paper [S. Larson, Geometric Hardy inequalities for the sub-elliptic Laplacian on convex domain in the Heisenberg group, Bull. Math. Sci. 6 (2016) 335–352]. Here, [Formula: see text] is the angle function. Also, we obtain a version of the Hardy–Sobolev inequality in a half-space of the Heisenberg group: [Formula: see text] where [Formula: see text] is the Euclidean distance to the boundary, [Formula: see text], and [Formula: see text]. For [Formula: see text], this gives the Hardy–Sobolev–Maz’ya inequality on the Heisenberg group.


1991 ◽  
Vol 123 ◽  
pp. 103-117 ◽  
Author(s):  
Jae-Hyun Yang

A certain nilpotent Lie group plays an important role in the study of the foundations of quantum mechanics ([Wey]) and of the theory of theta series (see [C], [I] and [Wei]). This work shows how theta series are applied to decompose the natural unitary representation of a Heisenberg group.


Author(s):  
TROND DIGERNES ◽  
V. S. VARADARAJAN

In its most general formulation a quantum kinematical system is described by a Heisenberg group; the "configuration space" in this case corresponds to a maximal isotropic subgroup. We study irreducible models for Heisenberg groups based on compact maximal isotropic subgroups. It is shown that if the Heisenberg group is 2-regular, but the subgroup is not, the "vacuum sector" of the irreducible representation exhibits a fermionic structure. This will be the case, for instance, in a quantum mechanical model based on the 2-adic numbers with a suitably chosen isotropic subgroup. The formulation in terms of Heisenberg groups allows a uniform treatment of p-adic quantum systems for all primes p, and includes the possibility of treating adelic systems.


1978 ◽  
Vol 21 (1) ◽  
pp. 17-19
Author(s):  
Dragomir Ž. Djoković

Let G be a group and ρ and σ two irreducible unitary representations of G in complex Hilbert spaces and assume that dimp ρ= n < ∞. D. Poguntke [2] proved that is a sum of at most n2 irreducible subrepresentations. The case when dim a is also finite he attributed to R. Howe.We shall prove analogous results for arbitrary finite-dimensional representations, not necessarily unitary. Thus let F be an algebraically closed field of characteristic 0. We shall use the language of modules and we postulate that allour modules are finite-dimensional as F-vector spaces. The field F itself will be considered as a trivial G-module.


2021 ◽  
Vol 11 (1) ◽  
pp. 482-502
Author(s):  
Zeyi Liu ◽  
Lulu Tao ◽  
Deli Zhang ◽  
Sihua Liang ◽  
Yueqiang Song

Abstract In this paper, we are concerned with the following a new critical nonlocal Schrödinger-Poisson system on the Heisenberg group: − a − b ∫ Ω | ∇ H u | 2 d ξ Δ H u + μ ϕ u = λ | u | q − 2 u + | u | 2 u , in Ω , − Δ H ϕ = u 2 , in Ω , u = ϕ = 0 , on ∂ Ω , $$\begin{equation*}\begin{cases} -\left(a-b\int_{\Omega}|\nabla_{H}u|^{2}d\xi\right)\Delta_{H}u+\mu\phi u=\lambda|u|^{q-2}u+|u|^{2}u,\quad &\mbox{in} \, \Omega,\\ -\Delta_{H}\phi=u^2,\quad &\mbox{in}\, \Omega,\\ u=\phi=0,\quad &\mbox{on}\, \partial\Omega, \end{cases} \end{equation*}$$ where Δ H is the Kohn-Laplacian on the first Heisenberg group H 1 $ \mathbb{H}^1 $ , and Ω ⊂ H 1 $ \Omega\subset \mathbb{H}^1 $ is a smooth bounded domain, a, b > 0, 1 < q < 2 or 2 < q < 4, λ > 0 and μ ∈ R $ \mu\in \mathbb{R} $ are some real parameters. Existence and multiplicity of solutions are obtained by an application of the mountain pass theorem, the Ekeland variational principle, the Krasnoselskii genus theorem and the Clark critical point theorem, respectively. However, there are several difficulties arising in the framework of Heisenberg groups, also due to the presence of the non-local coefficient (a − b∫Ω∣∇ H u∣2 dx) as well as critical nonlinearities. Moreover, our results are new even on the Euclidean case.


1992 ◽  
Vol 127 ◽  
pp. 167-174
Author(s):  
Hisasi Morikawa

1. Unipotent group of real (g + 2) × (g + 2) -matricesmay be regarded as a split extension of Ng (R) by Heisenberg group of real (g + 2) × (g + 2)-matrices


Sign in / Sign up

Export Citation Format

Share Document