scholarly journals Dynamic environments do not appear to constrain spider web building behaviour

2021 ◽  
Vol 108 (3) ◽  
Author(s):  
Tom Mulder ◽  
Lucas Wilkins ◽  
Beth Mortimer ◽  
Fritz Vollrath

AbstractMany laboratory experiments demonstrate how orb-web spiders change the architecture of their webs in response to prey, surroundings and wind loading. The overall shape of the web and a range of other web parameters are determined by frame and anchor threads. In the wild, unlike the lab, the anchor threads are attached to branches and leaves that are not stationary but move, which affects the thread tension field. Here we experimentally test the effect of a moving support structure on the construction behaviour and web-parameters of the garden cross spider Araneus diadematus. We found no significant differences in building behaviour between rigid and moving anchors in total time spent and total distance covered nor in the percentage of the total time spent and distance covered to build the three major web components: radials, auxiliary and capture spirals. Moreover, measured key parameters of web-geometry were equally unaffected. These results call for re-evaluation of common understanding of spider webs as thread tensions are often considered to be a major factor guiding the spider during construction and web-operation.

2010 ◽  
Vol 8 (57) ◽  
pp. 457-471 ◽  
Author(s):  
Aaron M. T. Harmer ◽  
Todd A. Blackledge ◽  
Joshua S. Madin ◽  
Marie E. Herberstein

Spider silks exhibit remarkable properties, surpassing most natural and synthetic materials in both strength and toughness. Orb-web spider dragline silk is the focus of intense research by material scientists attempting to mimic these naturally produced fibres. However, biomechanical research on spider silks is often removed from the context of web ecology and spider foraging behaviour. Similarly, evolutionary and ecological research on spiders rarely considers the significance of silk properties. Here, we highlight the critical need to integrate biomechanical and ecological perspectives on spider silks to generate a better understanding of (i) how silk biomechanics and web architectures interacted to influence spider web evolution along different structural pathways, and (ii) how silks function in an ecological context, which may identify novel silk applications. An integrative, mechanistic approach to understanding silk and web function, as well as the selective pressures driving their evolution, will help uncover the potential impacts of environmental change and species invasions (of both spiders and prey) on spider success. Integrating these fields will also allow us to take advantage of the remarkable properties of spider silks, expanding the range of possible silk applications from single threads to two- and three-dimensional thread networks.


1962 ◽  
Vol s3-103 (64) ◽  
pp. 557-571
Author(s):  
R. S. WILSON

A study of the tarsal claws, the spinning apparatus, and other factors affecting dragline spinning has been made using certain orb-web spiders, principally Araneus diadematus. The structure of the tarsal claws suggests that they are incapable of smoothly controlling the speed at which the silk thread is extracted, although they can grip and release the thread quickly. Evidence is presented that smooth control of spinning is achieved through the interaction of the intra-abdominal pressure and the control valve which lies in the silk duct. The intra-abdominal pressure is shown to be equivalent to from 3 to 4 cm of mercury, and to be responsible for moving the fluid silk out of the gland and up the duct. The experimental results also suggest that the control valve regulates the amount of fluid silk available for spinning as a thread and that it also acts as the functional spinning orifice, its aperture controlling the diameter of the thread spun.


2015 ◽  
Vol 61 (2) ◽  
pp. 313-327 ◽  
Author(s):  
Thomas Hesselberg

Abstract Orb-web spiders and their webs constitute an ideal model system in which to study behavioural flexibility and spatial cognition in invertebrates due to the easily quantifiable nature of the orb web. A large number of studies demonstrate how spiders are able to modify the geometry of their webs in response to a range of different conditions including the ability to adapt their webs to spatial constraints. However, the mechanisms behind this impressive web-building flexibility in these cognitively limited animals remain poorly explored. One possible mechanism though may be spatial learning during the spiders’ exploration of their immediate surroundings. This review discusses the importance of exploration behaviour, the reliance on simple behavioural rules, and the use of already laid threads as guidelines for web-building in orb-web spiders. The focus is on the spiders’ ability to detect and adapt their webs to space limitations and other spatial disruptions. I will also review the few published studies on how spatial information is gathered during the exploration phase and discuss the possibility of the use of ‘cognitive map’-like processes in spiders. Finally, the review provides suggestions for designing experimental studies to shed light on whether spiders gather metric information during the site exploration (cognitive map hypothesis) or rely on more simple binary information in combination with previously laid threads to build their webs (stigmergy hypothesis).


2013 ◽  
Vol 9 (4) ◽  
pp. 20130052 ◽  
Author(s):  
Kensuke Nakata

Although it is well known that spatial learning can be important in the biology of predators that actively move around in search for food, comparatively little is known about ways in which spatial learning might function in the strategies of sit-and-wait predators. In this study, Cyclosa octotuberculata , an orb-web spider that uses its legs to contract radial threads of its web to increase thread tension, was trained to capture prey in limited web sectors. After training, spiders that had captured prey in horizontal web sectors applied more tension on radial threads connected to horizontal sectors than spiders that had captured prey in vertical sectors. This result suggests that the effect of experience on C. octotuberculata 's behaviour is not expressed in the way the trained spider responds to prey-derived stimuli and is instead expressed in behaviour by which the spider anticipates the likely direction from which prey will arrive in the future. This illustrates that learning can be important even when the predator remains in one location during foraging bouts.


2016 ◽  
Author(s):  
Elizabeth J Roberson ◽  
Michael J Chips ◽  
Walter P Carson ◽  
Thomas P Rooney

Indirect effects are a common feature of ecological systems, arising when one species affects interactions among two or more other species. We examined how browsing by white-tailed deer (Odocoileus virginianus) affected the abundance and composition of a web-building spider guild through their effects on the structure of the ground and shrub layers of northern hardwood forests. We examined paired plots consisting of deer-free and control plots in Pennsylvania and Wisconsin. We recorded the abundance of seven types of webs, each corresponding to a family of web-building spiders. We quantified vegetation structure and habitat suitability for the spiders by computing a web scaffold availability index (WSAI) at 0.5 m and 1.0 m above the ground. At Wisconsin sites, we recorded prey availability. Spider webs were twice as abundant in deer-free plots compared to control plots, while WSAI was 7-12 times greater in deer-free plots. Prey availability was also higher in deer-free plots. With the exception of funnel web-builders, all spider web types were significantly more abundant in deer-free plots. Both deer exclusion and the geographic region of plots were significant predictors of spider community structure. In closed canopy forests with high browsing pressure, the low density of tree saplings and shrubs provides few locations for web-building spiders to anchor webs. Recruitment of these spiders may become coupled with forest disturbance events that increase tree and shrub recruitment. By modifying habitat structure, deer indirectly modify arthropod food web interactions. As deer populations have increased in eastern North America over the past several decades, the effects of deer on web-building spiders may be widespread throughout the region.


2016 ◽  
Author(s):  
Elizabeth J Roberson ◽  
Michael J Chips ◽  
Walter P Carson ◽  
Thomas P Rooney

Indirect ecological effects are a common feature of ecological systems, arising when one species affects interactions among two or more other species. We examined how browsing by white-tailed deer (Odocoileus virginianus) indirectly affected the abundance and composition of a web-building spider guild through their effects on the structure of the ground and shrub layers of northern hardwood forests. We examined paired plots consisting of deer-free and control plots in the Allegheny Plateau region Pennsylvania and Northern Highlands region of Wisconsin. We recorded the abundance of seven types of webs, each corresponding to a family of web-building spiders. We quantified vegetation structure and habitat suitability for the spiders by computing a web scaffold availability index (WSAI) at 0.5 m and 1.0 m above the ground. At Northern Highlands sites, we recorded prey availability. Spider webs were twice as abundant in deer-free plots compared to control plots, while WSAI was 7-12 times greater in deer-free plots. Prey availability was lower in deer-free plots. With the exception of funnel web-builders, all spider web types were significantly more abundant in deer-free plots. Both deer exclusion and the geographic region of plots were significant predictors of spider community structure. In closed canopy forests with high browsing pressure, the low density of tree saplings and shrubs provides few locations for web-building spiders to anchor webs. Recruitment of these spiders may become coupled with forest disturbance events that increase tree and shrub recruitment. By modifying habitat structure, deer appear to indirectly modify arthropod food web interactions. As deer populations have increased in eastern North America over the past several decades, the effects of deer on web-building spiders may be widespread.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2538 ◽  
Author(s):  
Elizabeth J. Roberson ◽  
Michael J. Chips ◽  
Walter P. Carson ◽  
Thomas P. Rooney

Indirect ecological effects are a common feature of ecological systems, arising when one species affects interactions among two or more other species. We examined how browsing by white-tailed deer (Odocoileus virginianus) indirectly affected the abundance and composition of a web-building spider guild through their effects on the structure of the ground and shrub layers of northern hardwood forests. We examined paired plots consisting of deer-free and control plots in the Allegheny Plateau region Pennsylvania and Northern Highlands region of Wisconsin. We recorded the abundance of seven types of webs, each corresponding to a family of web-building spiders. We quantified vegetation structure and habitat suitability for the spiders by computing a web scaffold availability index (WSAI) at 0.5 m and 1.0 m above the ground. At Northern Highlands sites, we recorded prey availability. Spider webs were twice as abundant in deer-free plots compared to control plots, while WSAI was 7–12 times greater in deerfree plots. Prey availability was lower in deer-free plots. With the exception of funnel web-builders, all spider web types were significantly more abundant in deer-free plots. Both deer exclusion and the geographic region of plots were significant predictors of spider community structure. In closed canopy forests with high browsing pressure, the low density of tree saplings and shrubs provides few locations for web-building spiders to anchor webs. Recruitment of these spiders may become coupled with forest disturbance events that increase tree and shrub recruitment. By modifying habitat structure, deer appear to indirectly modify arthropod food web interactions. As deer populations have increased in eastern North America over the past several decades, the effects of deer on web-building spiders may be widespread.


2016 ◽  
Author(s):  
Elizabeth J Roberson ◽  
Michael J Chips ◽  
Walter P Carson ◽  
Thomas P Rooney

Indirect ecological effects are a common feature of ecological systems, arising when one species affects interactions among two or more other species. We examined how browsing by white-tailed deer (Odocoileus virginianus) indirectly affected the abundance and composition of a web-building spider guild through their effects on the structure of the ground and shrub layers of northern hardwood forests. We examined paired plots consisting of deer-free and control plots in the Allegheny Plateau region Pennsylvania and Northern Highlands region of Wisconsin. We recorded the abundance of seven types of webs, each corresponding to a family of web-building spiders. We quantified vegetation structure and habitat suitability for the spiders by computing a web scaffold availability index (WSAI) at 0.5 m and 1.0 m above the ground. At Northern Highlands sites, we recorded prey availability. Spider webs were twice as abundant in deer-free plots compared to control plots, while WSAI was 7-12 times greater in deer-free plots. Prey availability was lower in deer-free plots. With the exception of funnel web-builders, all spider web types were significantly more abundant in deer-free plots. Both deer exclusion and the geographic region of plots were significant predictors of spider community structure. In closed canopy forests with high browsing pressure, the low density of tree saplings and shrubs provides few locations for web-building spiders to anchor webs. Recruitment of these spiders may become coupled with forest disturbance events that increase tree and shrub recruitment. By modifying habitat structure, deer appear to indirectly modify arthropod food web interactions. As deer populations have increased in eastern North America over the past several decades, the effects of deer on web-building spiders may be widespread.


Sign in / Sign up

Export Citation Format

Share Document