Targeted discovery of quantitative trait loci for resistance to northern leaf blight and other diseases of maize

2011 ◽  
Vol 123 (2) ◽  
pp. 307-326 ◽  
Author(s):  
Chia-Lin Chung ◽  
Jesse Poland ◽  
Kristen Kump ◽  
Jacqueline Benson ◽  
Joy Longfellow ◽  
...  
2020 ◽  
Vol 10 (10) ◽  
pp. 3611-3622
Author(s):  
Judith M. Kolkman ◽  
Josh Strable ◽  
Kate Harline ◽  
Dallas E. Kroon ◽  
Tyr Wiesner-Hanks ◽  
...  

Plant disease resistance is largely governed by complex genetic architecture. In maize, few disease resistance loci have been characterized. Near-isogenic lines are a powerful genetic tool to dissect quantitative trait loci. We analyzed an introgression library of maize (Zea mays) near-isogenic lines, termed a nested near-isogenic line library for resistance to northern leaf blight caused by the fungal pathogen Setosphaeria turcica. The population was comprised of 412 BC5F4 near-isogenic lines that originated from 18 diverse donor parents and a common recurrent parent, B73. Single nucleotide polymorphisms identified through genotyping by sequencing were used to define introgressions and for association analysis. Near-isogenic lines that conferred resistance and susceptibility to northern leaf blight were comprised of introgressions that overlapped known northern leaf blight quantitative trait loci. Genome-wide association analysis and stepwise regression further resolved five quantitative trait loci regions, and implicated several candidate genes, including Liguleless1, a key determinant of leaf architecture in cereals. Two independently-derived mutant alleles of liguleless1 inoculated with S. turcica showed enhanced susceptibility to northern leaf blight. In the maize nested association mapping population, leaf angle was positively correlated with resistance to northern leaf blight in five recombinant inbred line populations, and negatively correlated with northern leaf blight in four recombinant inbred line populations. This study demonstrates the power of an introgression library combined with high density marker coverage to resolve quantitative trait loci. Furthermore, the role of liguleless1 in leaf architecture and in resistance to northern leaf blight has important applications in crop improvement.


2019 ◽  
Vol 167 (10) ◽  
pp. 591-600 ◽  
Author(s):  
Maninder Kaur ◽  
Yogesh Vikal ◽  
Harleen Kaur ◽  
Lalit Pal ◽  
Kirandeep Kaur ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Hosahally Muddrangappa Ranganatha ◽  
Hirenallur Chandappa Lohithaswa ◽  
Anand Pandravada

Among various foliar diseases affecting maize yields worldwide, northern corn leaf blight (NCLB) is economically important. The genetics of resistance was worked out to be quantitative in nature thereby suggesting the need for the detection of quantitative trait loci (QTL) to initiate effective marker-aided breeding strategies. From the cross CML153 (susceptible) × SKV50 (resistant), 344 F2:3 progenies were derived and screened for their reaction to NCLB during the rainy season of 2013 and 2014. The identification of QTL affecting resistance to NCLB was carried out using the genetic linkage map constructed with 194 polymorphic SNPs and the disease data recorded on F2:3 progeny families. Three QTL for NCLB resistance were detected on chromosomes 2, 5, and 8 with the QTL qNCLB-8-2 explaining the highest phenotypic variation of 16.34% followed by qNCLB-5 with 10.24%. QTL for resistance to sorghum downy mildew (SDM) and southern corn rust (SCR) were also identified from one season phenotypic data, and the co-location of QTL for resistance to three foliar diseases was investigated. QTL present in chromosome bins 8.03, 5.03, 5.04, and 3.04 for resistance to NCLB, SDM, and SCR were co-localized, indicating their usefulness for the pyramiding of quantitative resistance to multiple foliar pathogens. Marker-assisted selection was practiced in the crosses CM212 × SKV50, HKI162 × SKV50, and CML153 × SKV50 employing markers linked to major QTL on chromosomes 8, 2, and 10 for NCLB, SDM, and SCR resistance, respectively. The populations were advanced to F6 stage to derive multiple disease-resistant inbred lines. Out of the 125 lines developed, 77 lines were tested for their combining ability and 39 inbred lines exhibited high general combining ability with an acceptable level of resistance to major diseases.


2001 ◽  
Vol 91 (3) ◽  
pp. 293-300 ◽  
Author(s):  
A. F. Brown ◽  
J. A. Juvik ◽  
J. K. Pataky

Partial resistance to Stewart's wilt (Erwina stewartii, syn. Pantoea stewartii), northern corn leaf blight (NCLB) (Exserohilum turcicum), and common rust (Puccinia sorghi) was observed in an F2:3 population developed from a cross between the inbred sweet corn lines IL731a and W6786. The objective of this study was to identify quantitative trait loci (QTL) associated with partial resistance using restriction fragment length polymorphic markers. Phenotypic data were collected for 2 years for Stewart's wilt, NCLB, and common rust but, due to significant family-environment interaction, analysis was conducted individually on data from each year. In 2 years of evaluation for the three diseases, a total of 33 regions in the maize genome were associated with partial resistance describing from 5.9 to 18% of the total phenotypic variability. Of six regions common in both years, three were associated with partial resistance to Stewart's wilt (chromosomes 4:07, 5:03, and 6:04), one was associated with NCLB (chromosome 9:05), and two were associated with common rust (chromosomes 2:04 and 3:04). The rust QTL on 3S mapped to within 20 cM of the rp3 locus and explained 17.7% of the phenotypic variability. Some of the QTL associated with partial resistance to the three diseases have been reported previously, and some are described here for the first time. Results suggest it may be possible to consolidate QTL from various elite backgrounds in a manner analogous to the pyramiding of major resistance genes. We also report here on two QTL associated with anthocyanin production on chromosomes 10:6 and 5:03 in the general location of the a2 gene.


2008 ◽  
Vol 98 (3) ◽  
pp. 315-320 ◽  
Author(s):  
P. J. Balint-Kurti ◽  
J. C. Zwonitzer ◽  
M. E. Pè ◽  
G. Pea ◽  
M. Lee ◽  
...  

The genetic architecture underlying resistance in maize to southern leaf blight (SLB) caused by Cochliobolus heterostrophus race O is not well understood. The objective of this study was to identify loci contributing to SLB resistance in two recombinant inbred line populations and to compare these to SLB resistance loci in other populations. The two populations used were derived from crosses between maize inbred lines H99 and B73 (HB population–142 lines) and between B73 and B52 (BB population–186 lines). They were evaluated for SLB resistance and for days from planting to anthesis (DTA) in 2005 and 2006. Two replications arranged as randomized complete blocks were assessed in each year for each population. Entry mean heritabilities for disease resistance were high for both populations (0.876 and 0.761, respectively). Quantitative trait loci (QTL) for SLB resistance were identified in bins 3.04 (two QTL), 6.01, and 8.05 in the HB population and in bin 2.07 in the BB population. No overlap of DTA and SLB resistance QTL was observed, nor was there any phenotypic correlation between the traits. A comparison of the results of all published SLB resistance QTL studies suggested that bins 3.04 and 6.01 are ‘hotspots’ for SLB resistance QTL.


2010 ◽  
Vol 100 (1) ◽  
pp. 72-79 ◽  
Author(s):  
John C. Zwonitzer ◽  
Nathan D. Coles ◽  
Matthew D. Krakowsky ◽  
Consuelo Arellano ◽  
James B. Holland ◽  
...  

Southern leaf blight (SLB), gray leaf spot (GLS), and northern leaf blight (NLB) are all important foliar diseases impacting maize production. The objectives of this study were to identify quantitative trait loci (QTL) for resistance to these diseases in a maize recombinant inbred line (RIL) population derived from a cross between maize lines Ki14 and B73, and to evaluate the evidence for the presence genes or loci conferring multiple disease resistance (MDR). Each disease was scored in multiple separate trials. Highly significant correlations between the resistances and the three diseases were found. The highest correlation was identified between SLB and GLS resistance (r = 0.62). Correlations between resistance to each of the diseases and time to flowering were also highly significant. Nine, eight, and six QTL were identified for SLB, GLS, and NLB resistance, respectively. QTL for all three diseases colocalized in bin 1.06, while QTL colocalizing for two of the three diseases were identified in bins 1.08 to 1.09, 2.02/2.03, 3.04/3.05, 8.05, and 10.05. QTL for time to flowering were also identified at four of these six loci (bins 1.06, 3.04/3.05, 8.05, and 10.05). No disease resistance QTL was identified at the largest-effect QTL for flowering time in bin 10.03.


Medicine ◽  
2020 ◽  
Vol 99 (31) ◽  
pp. e21326
Author(s):  
Haifeng Xia ◽  
Wei Gao ◽  
Jing Qu ◽  
Liqiang Dai ◽  
Yan Gao ◽  
...  

2006 ◽  
Vol 96 (3) ◽  
pp. 221-225 ◽  
Author(s):  
P. J. Balint-Kurti ◽  
M. L. Carson

A set of 192 maize recombinant inbred lines (RILs), derived from a cross between the inbred lines Mo17 and B73, were evaluated as 3-week-old seedlings in the greenhouse for resistance to southern leaf blight, caused by Cochliobolus heterostrophus race O. Six significant (LOD >3.1) quantitative trait loci (QTL) were identified for disease resistance, located on chromosomes 1, 2, 3, 6, 7, and 8. Results were compared with a previous study that had used the same RIL population and pathogen isolate, but had examined resistance in mature rather than juvenile plants. There was a very weak but significant correlation between the overall resistance phenotypes of the RILs scored as mature and juvenile plants. Two QTL were found in similar positions on chromosomes 1 and 3 at both growth stages. Other QTL were specific to one growth stage or the other. Twenty-three of these RILs, together with the parental lines, were inoculated in the greenhouse with four C. heterostrophus isolates. Results indicated that the quantitative resistance observed was largely isolate non-specific.


2004 ◽  
Vol 94 (8) ◽  
pp. 862-867 ◽  
Author(s):  
M. L. Carson ◽  
C. W. Stuber ◽  
M. L. Senior

A random set of recombinant inbred (RI) lines (F2:7) derived from the cross of the inbred lines Mo17 (resistant) and B73 (susceptible) were evaluated for resistance to southern leaf blight (SLB) caused by Cochliobolus heterostrophus race O. The RI lines were genotyped at a total of 234 simple sequence repeat, restriction fragment length polymorphism, or isozyme loci. Field plots of the RI lines were inoculated artificially with an aggressive isolate of C. heterostrophus race O in each of two growing seasons in North Carolina. Lines were rated for percent SLB severity two (1996) or three (1995) times during the grain-filling period. Data also were converted to area under the disease progress curve (AUDPC) and analyzed using the composite interval mapping option of the PLABQTL program. When means of disease ratings over years were fitted to models, a total of 11 quantitative trait loci (QTLs) were found to condition resistance to SLB, depending upon which disease ratings were used in the analyses. When the AUDPC data were combined and analyzed over environments, seven QTLs, on chromosomes 1, 2, 3, 4, 7, and 10 were found to come from the resistant parent Mo17. An additional QTL for resistance on chromosome 1 came from the susceptible parent B73. The eight identified QTLs accounted for 46% of the phenotypic variation for resistance. QTL × environment interactions often were highly significant but, with one exception, were the result of differences in the magnitude of QTL effects between years and not due to changes in direction of effects. QTLs on the long arm of chromosome 1 and chromosomes 2 and 3 had the largest effects, were the most consistently detected, and accounted for most of the phenotypic variance. No significant additive × additive epistatic effects were detected. These data support earlier reports of the polygenic inheritance of resistance to SLB of maize.


Sign in / Sign up

Export Citation Format

Share Document