scholarly journals Maize Introgression Library Provides Evidence for the Involvement of liguleless1 in Resistance to Northern Leaf Blight

2020 ◽  
Vol 10 (10) ◽  
pp. 3611-3622
Author(s):  
Judith M. Kolkman ◽  
Josh Strable ◽  
Kate Harline ◽  
Dallas E. Kroon ◽  
Tyr Wiesner-Hanks ◽  
...  

Plant disease resistance is largely governed by complex genetic architecture. In maize, few disease resistance loci have been characterized. Near-isogenic lines are a powerful genetic tool to dissect quantitative trait loci. We analyzed an introgression library of maize (Zea mays) near-isogenic lines, termed a nested near-isogenic line library for resistance to northern leaf blight caused by the fungal pathogen Setosphaeria turcica. The population was comprised of 412 BC5F4 near-isogenic lines that originated from 18 diverse donor parents and a common recurrent parent, B73. Single nucleotide polymorphisms identified through genotyping by sequencing were used to define introgressions and for association analysis. Near-isogenic lines that conferred resistance and susceptibility to northern leaf blight were comprised of introgressions that overlapped known northern leaf blight quantitative trait loci. Genome-wide association analysis and stepwise regression further resolved five quantitative trait loci regions, and implicated several candidate genes, including Liguleless1, a key determinant of leaf architecture in cereals. Two independently-derived mutant alleles of liguleless1 inoculated with S. turcica showed enhanced susceptibility to northern leaf blight. In the maize nested association mapping population, leaf angle was positively correlated with resistance to northern leaf blight in five recombinant inbred line populations, and negatively correlated with northern leaf blight in four recombinant inbred line populations. This study demonstrates the power of an introgression library combined with high density marker coverage to resolve quantitative trait loci. Furthermore, the role of liguleless1 in leaf architecture and in resistance to northern leaf blight has important applications in crop improvement.

2019 ◽  
Author(s):  
Judith M. Kolkman ◽  
Josh Strable ◽  
Kate Harline ◽  
Dallas E. Kroon ◽  
Tyr Wiesner-Hanks ◽  
...  

AbstractPlant disease resistance is largely governed by complex genetic architecture. In maize, few disease resistance loci have been characterized. Near-isogenic lines (NILs) are a powerful genetic tool to dissect quantitative trait loci (QTL). We analyzed an introgression library of maize near-isogenic lines (NILs), termed a nested NIL (nNIL) library for resistance to northern leaf blight (NLB) caused by the fungal pathogen Setosphaeria turcica. The nNIL library was comprised of 412 BC5F4 NILs that originated from 18 diverse donor parents and a common recurrent parent, B73. Single nucleotide polymorphisms identified through genotyping by sequencing (GBS) were used to define introgressions and for association analysis. NILs that conferred resistance and susceptibility to NLB were comprised of introgressions that overlapped known NLB QTL. Genome-wide association analysis and stepwise regression further resolved five QTL regions, and implicated several candidate genes, including Liguleless1 (Lg1), a key determinant of leaf architecture in cereals. Two independently-derived mutant alleles of lg1 inoculated with S. turcica showed enhanced susceptibility to NLB. In the maize nested association mapping population, leaf angle was positively correlated with NLB in five recombinant inbred line (RIL) populations, and negatively correlated with NLB in four RIL populations. This study demonstrates the power of a nNIL library combined with high density SNP coverage to resolve QTLs. Furthermore, the role of lg1 in leaf architecture and in resistance to NLB has important applications in crop improvement.Significance Statement (120 words)Understanding the genetic basis of disease resistance is important for crop improvement. We analyzed response to northern leaf blight (NLB) in a maize population consisting of 412 near-isogenic lines (NILs) derived from 18 diverse donor parents backcrossed to a recurrent parent, B73. NILs were genotyped by sequencing to detect introgressed segments. We identified NILs with greater resistance or susceptibility to NLB than B73. Genome-wide association analysis, coupled with stepwise regression, identified 5 candidate loci for NLB resistance, including the liguleless1 gene. The LIGULELESS1 transcription factor is critical in development of the leaf ligular region and influences leaf angle. We found that liguleless1 mutants are significantly more susceptible to NLB, uncovering a pleiotropic role for liguleless1 in development and disease resistance.


2011 ◽  
Vol 123 (2) ◽  
pp. 307-326 ◽  
Author(s):  
Chia-Lin Chung ◽  
Jesse Poland ◽  
Kristen Kump ◽  
Jacqueline Benson ◽  
Joy Longfellow ◽  
...  

Crop Science ◽  
2014 ◽  
Vol 54 (1) ◽  
pp. 127-142 ◽  
Author(s):  
Santiago X. Mideros ◽  
Marilyn L. Warburton ◽  
Tiffany M. Jamann ◽  
Gary L. Windham ◽  
W. Paul Williams ◽  
...  

2016 ◽  
Vol 96 (3) ◽  
pp. 423-432 ◽  
Author(s):  
Xiaomao Cheng ◽  
Shu Xia ◽  
Xihua Zeng ◽  
Jianxun Gu ◽  
Yuan Yang ◽  
...  

Seed oil content is a key seed quality trait determining the economic value of rapeseed (Brassica napus L.). However, it is a complex quantitative trait controlled by multiple genes. To this point, its genetic mechanism in rapeseed remains to be revealed. In the present study, we separately identified the quantitative trait loci (QTL) controlling seed oil content of B. napus using three generations of recombinant inbred line (RIL) populations (F4:5, F5:6, and F6:7) derived from a cross of two contrasting parents (M201, a high-oil parent, and M202, a low-oil parent) in four trials. The results indicated that the additive effects may be the primary factors contributing to the variation in seed oil content in B. napus. A total of 15 QTL for seed oil content were mapped. Two of them, namely qOC-A9-3 and qOC-A10, were consistently detected across two and all four environments, respectively. Meanwhile, qOC-A10 showed a large effect on phenotypic variation in seed oil content. The stability and significance of qOC-A10 was also validated in the near isogenic lines (NILs-qOC-A10) developed from the RIL population (F4:5) using marker-assisted selection. The qOC-A10 is of particular interest for further fine mapping and map-based cloning.


2011 ◽  
Vol 124 (1) ◽  
pp. 35-47 ◽  
Author(s):  
Elisabetta Frascaroli ◽  
Maria Angela Canè ◽  
Mario Enrico Pè ◽  
Giorgio Pea ◽  
Pierangelo Landi

Sign in / Sign up

Export Citation Format

Share Document