northern leaf blight
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Nader R. Abdelsalam ◽  
Maha G. Balbaa ◽  
Hassan T. Osman ◽  
Rehab Y. Ghareeb ◽  
El-Sayed M. Desoky ◽  
...  

2021 ◽  
Author(s):  
Railan do Nascimento Ferreira Kurosawa ◽  
Antônio Teixeira do Amaral Junior ◽  
Marcelo Vivas ◽  
Rafael Nunes Almeida ◽  
Janielli Maganha Silva Vivas ◽  
...  

2020 ◽  
Vol 116 (11/12) ◽  
Author(s):  
Dave K. Berger ◽  
Tumisang Mokgobu ◽  
Katrien de Ridder ◽  
Nanette Christie ◽  
Theresa A.S. Aveling

Maize underpins food security in South Africa. An annual production of more than 10 million tons is a combination of the output of large-scale commercial farms plus an estimated 250 000 ha cultivated by smallholder farmers. Maize leaves are a rich source of nutrients for fungal pathogens. Farmers must limit leaf blighting by fungi to prevent sugars captured by photosynthesis being ‘stolen’ instead of filling the grain. This study aimed to fill the knowledge gap on the prevalence and impact of fungal foliar diseases in local smallholder maize fields. A survey with 1124 plant observations from diverse maize hybrids was conducted over three seasons from 2015 to 2017 in five farming communities in KwaZulu-Natal Province (Hlanganani, Ntabamhlophe, KwaNxamalala) and Eastern Cape Province (Bizana, Tabankulu). Northern leaf blight (NLB), common rust, Phaeosphaeria leaf spot, and grey leaf spot had overall disease incidences of 75%, 77%, 68% and 56%, respectively, indicating high disease pressure in smallholder farming environments. NLB had the highest disease severity (LSD test, p<0.05). A yield trial focused on NLB in KwaZulu-Natal showed that this disease reduced yields in the three most susceptible maize hybrids by 36%, 71% and 72%, respectively. Eighteen other hybrids in this trial did not show significant yield reductions due to NLB, which illustrates the progress made by local maize breeders in disease resistance breeding. This work highlights the risk to smallholder farmers of planting disease-susceptible varieties, and makes recommendations on how to exploit the advances of hybrid maize disease resistance breeding to develop farmer-preferred varieties for smallholder production.


2020 ◽  
Vol 10 (10) ◽  
pp. 3611-3622
Author(s):  
Judith M. Kolkman ◽  
Josh Strable ◽  
Kate Harline ◽  
Dallas E. Kroon ◽  
Tyr Wiesner-Hanks ◽  
...  

Plant disease resistance is largely governed by complex genetic architecture. In maize, few disease resistance loci have been characterized. Near-isogenic lines are a powerful genetic tool to dissect quantitative trait loci. We analyzed an introgression library of maize (Zea mays) near-isogenic lines, termed a nested near-isogenic line library for resistance to northern leaf blight caused by the fungal pathogen Setosphaeria turcica. The population was comprised of 412 BC5F4 near-isogenic lines that originated from 18 diverse donor parents and a common recurrent parent, B73. Single nucleotide polymorphisms identified through genotyping by sequencing were used to define introgressions and for association analysis. Near-isogenic lines that conferred resistance and susceptibility to northern leaf blight were comprised of introgressions that overlapped known northern leaf blight quantitative trait loci. Genome-wide association analysis and stepwise regression further resolved five quantitative trait loci regions, and implicated several candidate genes, including Liguleless1, a key determinant of leaf architecture in cereals. Two independently-derived mutant alleles of liguleless1 inoculated with S. turcica showed enhanced susceptibility to northern leaf blight. In the maize nested association mapping population, leaf angle was positively correlated with resistance to northern leaf blight in five recombinant inbred line populations, and negatively correlated with northern leaf blight in four recombinant inbred line populations. This study demonstrates the power of an introgression library combined with high density marker coverage to resolve quantitative trait loci. Furthermore, the role of liguleless1 in leaf architecture and in resistance to northern leaf blight has important applications in crop improvement.


Author(s):  
Aida Kebede ◽  
Lana M Reid ◽  
Constantin Voloaca ◽  
Ron De Schiffart ◽  
Jinhe Wu ◽  
...  

CO475 is an early-medium maturity (75 days to flowering) mostly Iodent yellow semi-dent inbred which combines well with several testers in many different locations. It has moderate resistance to gibberella ear rot (both the inbred and in hybrid combinations) and intermediate response to smut, fusarium stalk rot, northern leaf blight, eyespot, rust, and goss’s wilt.


Author(s):  
Aida Kebede ◽  
Lana M Reid ◽  
Constantin Voloaca ◽  
Ron De Schiffart ◽  
Jinhe Wu ◽  
...  

CO474 is a mostly Stiff Stalk (BSSS) yellow semi-dent inbred with early-medium maturity (75 days to flowering). It has moderate resistance to eyespot and rust and intermediate reactions to fusarium stalk rot, northern leaf blight and goss’s wilt. This inbred combines well with several testers in many different locations.


Sign in / Sign up

Export Citation Format

Share Document