scholarly journals High-resolution mapping of Rym14Hb, a wild relative resistance gene to barley yellow mosaic disease

Author(s):  
Hélène Pidon ◽  
Neele Wendler ◽  
Antje Habekuβ ◽  
Anja Maasberg ◽  
Brigitte Ruge-Wehling ◽  
...  

Abstract Key message We mapped the Rym14Hb resistance locus to barley yellow mosaic disease in a 2Mbp interval. The co-segregating markers will be instrumental for marker-assisted selection in barley breeding. Abstract Barley yellow mosaic disease is caused by Barley yellow mosaic virus and Barley mild mosaic virus and leads to severe yield losses in barley (Hordeum vulgare) in Central Europe and East-Asia. Several resistance loci are used in barley breeding. However, cases of resistance-breaking viral strains are known, raising concerns about the durability of those genes. Rym14Hb is a dominant major resistance gene on chromosome 6HS, originating from barley’s secondary genepool wild relative Hordeum bulbosum. As such, the resistance mechanism may represent a case of non-host resistance, which could enhance its durability. A susceptible barley variety and a resistant H. bulbosum introgression line were crossed to produce a large F2 mapping population (n = 7500), to compensate for a ten-fold reduction in recombination rate compared to intraspecific barley crosses. After high-throughput genotyping, the Rym14Hb locus was assigned to a 2Mbp telomeric interval on chromosome 6HS. The co-segregating markers developed in this study can be used for marker-assisted introgression of this locus into barley elite germplasm with a minimum of linkage drag.

2020 ◽  
Author(s):  
Hélène Pidon ◽  
Neele Wendler ◽  
Antje Habekuβ ◽  
Anja Maasberg ◽  
Brigitte Ruge-Wehling ◽  
...  

AbstractBarley yellow mosaic disease is caused by Barley yellow mosaic virus and Barley mild mosaic virus, and leads to severe yield losses in barley (Hordeum vulgare) in Central Europe and East-Asia. Several resistance loci are used in barley breeding. However, cases of resistance-breaking viral strains are known, raising concerns about the durability of those genes. Rym14Hb is a dominant major resistance gene on chromosome 6HS, originating from barley’s secondary genepool wild relative Hordeum bulbosum. As such, the resistance mechanism may represent a case of non-host resistance, which could enhance its durability. A susceptible barley variety and a resistant H. bulbosum introgression line were crossed to produce a large F2 mapping population (n=7,500), to compensate for a ten-fold reduction in recombination rate compared to intraspecific barley crosses. After high-throughput genotyping, the Rym14Hb locus was assigned to a 2Mbp telomeric interval on chromosome 6HS. The co-segregating markers developed in this study can be used for marker-assisted introgression of this locus into barley elite germplasm with a minimum of linkage drag.


Author(s):  
Sudeep Pandey ◽  
T.R. Girish ◽  
S. Basavaraj ◽  
A.S. Padmaja ◽  
N. Nagaraju

Background: Yellow mosaic disease (YMD) caused by begomoviruses transmitted through the insect vector Bemisia tabaci poses a serious threat to the production of legume crops. Methods: Season-long surveys were carried out for YMD occurrence in six different legume crops and associated natural weeds both symptomatic and asymptomatic across the districts of southern Karnataka, India. The samples were analyzed through RCA PCR using specific primer pairs. Result: Up to 94.1 per cent YMD incidence was recorded and nine weed species were commonly found associated with legume crops. The weeds viz., Ageratum conyzoides, Alternanthera sessilis, Commelina benghalensis and Euphorbia geniculata were abundantly found in the surveyed regions. The weeds were both symptomatic and asymptomatic. Rolling circle amplification coupled polymerase chain reaction method was employed to detect yellow mosaic virus in asymptomatic weeds. Phylogenetic analysis based on the sequences of PCR amplified products of weeds and symptomatic legumes revealed a close clustering of the weed samples with horsegram yellow mosaic virus, legume yellow mosaic virus and mungbean yellow mosaic virus. Overall, our data suggests the role of weed species associated with legume crops as alternative/collateral hosts of begomoviruses and their role in the epidemiology of yellow mosaic disease.


2018 ◽  
Vol 1 (2) ◽  
pp. p100
Author(s):  
Md. S. Islam ◽  
Md. B. Hossain ◽  
Saleh A. Shahriar ◽  
Fatema Begum ◽  
Md. N. H. Sani

The prime aim of the study was to manage of Yellow mosaic disease of mungbean against Mungbean yellow mosaic virus (MYMV) by using one newly release botanical nutrient and through three selected insecticides. BARI (Bangladesh Agricultural Research Institute) released variety BARI mung-5, three insecticides (Imidacloprid, Acmix and Sobicron) and one botanical nutrient PPN (Peak performance nutrients) were used in the experiment. The plants were grown for pulse production and natural inoculums were relied upon for the infection of MYMV. Growth parameters, yield attributes and physiological features were significantly influenced by the application of selected insecticides and PPN combinations. Disease incidence and disease severity of MYMV were significantly varied among the treatments. Application of Imidacloprid with PPN combination gave the lowest disease incidence (3.13, 5.24 and 6.24% per plot and 14.33, 15.49 and 21.87% per plant) at 30, 40 and 50 DAS, respectively while the highest disease incidence (7.77, 13.70 and 19.24% per plot and 39.33, 48.20 and 56.63% per plant) were found in control at 30, 40 and 50 DAS, respectively. Application of Imidacloprid with PPN also gave the lowest disease severity (5.00, 6.00 and 13.33% at 30, 40 and 50 DAS, respectively while the highest disease severity (27.33, 35.00 and 45.00%) at 30, 40 and 50 DAS, respectively were measured in control treatment when no insecticides and PPN was used. If the disease is established once in the field then it is difficult to manage. As the disease is transmitted by vector (whitefly), the growers are suggested to control the vector populations before reaching economic damage and severe disease infection.


Plant Disease ◽  
2020 ◽  
Author(s):  
Zhiwei Chen ◽  
Shuihua Mao ◽  
Wan Zhang ◽  
Xaorui Fan ◽  
Wenjing Wu ◽  
...  

Barley yellow mosaic disease, caused mainly by barley yellow mosaic virus (BaYMV) and barley mild mosaic virus (BaMMV), is a devastating disease of barley and is a threat to Eurasian barley production. Early detection is essential for effective management of the pathogens and to assure food security. In the present study, a simple, rapid, specific, sensitive, and visual method was developed to detect BaYMV using loop-mediated isothermal amplification (LAMP). Two pairs of oligonucleotide primers (inner and outer primers) were designed to amplify the gene encoding the coat protein of BaYMV. The optimal conditions for the LAMP method were determined, and a one-step reverse transcription (RT)-LAMP method was also developed. Subsequently, the fastest processing time for RT-LAMP was determined. Among eight plant viruses examined using the LAMP method, only BaYMV was detectable, suggesting that the assay was highly specific. The RT-LAMP method was ten times more sensitive than the RT-PCR method in the sensitivity test. To further shorten the virus detection process, a dye was added to the RT-LAMP products, and positive reactions were simply read by the naked eye via a color change (from orange to light green) under visible light. Barley samples from the middle and lower reaches of the Yangtze River basin, where barley yellow mosaic disease broke out very seriously in 1970s, were detected by the newly established RT-LAMP method. The results showed that all samples were positive for BaYMV, indicating that the potential risk of the virus in these areas. This newly established LAMP/RT-LAMP method could be a promising tool for barley protection and food security control.


Author(s):  
M. Bhagyashree ◽  
S. Basavaraj ◽  
H. A. Prameela ◽  
G. Jyoti ◽  
Manjunath S. Hurakadli ◽  
...  

Yellow mosaic disease caused by a Begomovirus has become an important production constraint in lima bean cultivation in Karnataka. The begomovirus causes Lima bean Yellow Mosaic Virus (LYMV), was characterized by sequencing the CP and MP genes. Distinct viral gene specific PCR product corresponding to CP and MP gene ~1000 bp and ~900 bp was obtained. The PCR product were sequenced and compared with the reference Begomoviruses sequences from the NCBI blast database. LYMV (GKVK isolate) shared highest nucleotide identity (98%) with Horsegram yellow mosaic virus (HgYMV) of French bean isolate (Accession No. AM932425.1). Phylogenetic analysis of CP and MP gene sequences of LYMV-GKVK isolate showed that LYMV-GKVK clustered with isolates of HgYMV Horsegram and French bean isolates of Tamil Nadu, Srilanka, Karnataka. Based on Nucleotide Identity begomovirus infecting lima bean at Bangalore is to be considered as strain of HgYMV. The disease was also successfully transmitted to French bean and Horsegram when experimentally transmitted using whitefly vector. Therefore, the begomovirus causing yellow mosaic disease of lima bean is considered as strain of HgYMV. Lima bean is infected by Mungbean Yellow Mosaic India Virus (MYMIV) according to earlier reports whereas our study the reports the infection of HgYMV on Lima bean from Karnataka. Thus it is concluded that Lima bean is infected by both MYMIV and HgYMV in different geographical locations.


Genome ◽  
2006 ◽  
Vol 49 (9) ◽  
pp. 1140-1148 ◽  
Author(s):  
C. Bass ◽  
R. Hendley ◽  
M.J. Adams ◽  
K.E. Hammond-Kosack ◽  
K. Kanyuka

A mosaic disease caused by Soil-borne cereal mosaic virus (SBCMV) is becoming increasingly important, particularly in winter wheat in Europe. As there are currently no effective cultural practices or practical environmentally friendly chemicals for disease control, host plant resistance is an important objective in breeding programs. However, development of resistant cultivars is slow owing to difficulties in germplasm screening for resistance. Therefore, there is a need to identify molecular markers linked to SBCMV-resistance gene(s), so that quick and accurate laboratory-based marker-assisted selection rather than prolonged field-based screens for resistance can be used in developing resistant cultivars. We previously demonstrated that resistance to SBCMV in Triticum aestivum ‘Cadenza’ is controlled by a single locus. In this work, we used AFLP and microsatellite technology to map this resistance locus, with the proposed name Sbm1, to the distal end of chromosome 5DL. Interestingly, several expressed disease-resistance gene analogues also map to this gene-rich region on 5DL. Closely linked (~17 cM interval) markers, BARC110 and WMC765, RRES01 and BARC144, that flank Sbm1 will be very useful in breeding for selection of germplasm carrying Sbm1.


Sign in / Sign up

Export Citation Format

Share Document