wild relative
Recently Published Documents


TOTAL DOCUMENTS

368
(FIVE YEARS 106)

H-INDEX

33
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Carolina Ballén-Taborda ◽  
Ye Chu ◽  
Peggy Ozias-Akins ◽  
C. Corley Holbrook ◽  
Patricia Timper ◽  
...  

Crop wild species are increasingly important for crop improvement. Peanut (Arachis hypogaea L.) wild relatives comprise a diverse genetic pool that is being used to broaden its narrow genetic base. Peanut is an allotetraploid species extremely susceptible to peanut root-knot nematode (PRKN) Meloidogyne arenaria. Current resistant cultivars rely on a single introgression for PRKN resistance incorporated from the wild relative Arachis cardenasii, which could be overcome as a result of the emergence of virulent nematode populations. Therefore, new sources of resistance may be needed. Near-immunity has been found in the peanut wild relative Arachis stenosperma. The two loci controlling the resistance, present on chromosomes A02 and A09, have been validated in tetraploid lines and have been shown to reduce nematode reproduction by up to 98%. To incorporate these new resistance QTL into cultivated peanut, we used a marker-assisted backcrossing approach, using PRKN A. stenosperma-derived resistant lines as donor parents. Four cycles of backcrossing were completed, and SNP assays linked to the QTL were used for foreground selection. In each backcross generation seed weight, length, and width were measured, and based on a statistical analysis we observed that only one generation of backcrossing was required to recover the elite peanut’s seed size. A populating of 271 BC3F1 lines was genome-wide genotyped to characterize the introgressions across the genome. Phenotypic information for leaf spot incidence and domestication traits (seed size, fertility, plant architecture, and flower color) were recorded. Correlations between the wild introgressions in different chromosomes and the phenotypic data allowed us to identify candidate regions controlling these domestication traits. Finally, PRKN resistance was validated in BC3F3 lines. We observed that the QTL in A02 and/or large introgression in A09 are needed for resistance. This present work represents an important step toward the development of new high-yielding and nematode-resistant peanut cultivars.


2022 ◽  
Vol 265 ◽  
pp. 109432
Author(s):  
Holly Vincent ◽  
David Hole ◽  
Nigel Maxted

PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009797
Author(s):  
Luis Fernando Samayoa ◽  
Bode A. Olukolu ◽  
Chin Jian Yang ◽  
Qiuyue Chen ◽  
Markus G. Stetter ◽  
...  

Inbreeding depression is the reduction in fitness and vigor resulting from mating of close relatives observed in many plant and animal species. The extent to which the genetic load of mutations contributing to inbreeding depression is due to large-effect mutations versus variants with very small individual effects is unknown and may be affected by population history. We compared the effects of outcrossing and self-fertilization on 18 traits in a landrace population of maize, which underwent a population bottleneck during domestication, and a neighboring population of its wild relative teosinte. Inbreeding depression was greater in maize than teosinte for 15 of 18 traits, congruent with the greater segregating genetic load in the maize population that we predicted from sequence data. Parental breeding values were highly consistent between outcross and selfed offspring, indicating that additive effects determine most of the genetic value even in the presence of strong inbreeding depression. We developed a novel linkage scan to identify quantitative trait loci (QTL) representing large-effect rare variants carried by only a single parent, which were more important in teosinte than maize. Teosinte also carried more putative juvenile-acting lethal variants identified by segregation distortion. These results suggest a mixture of mostly polygenic, small-effect partially recessive effects in linkage disequilibrium underlying inbreeding depression, with an additional contribution from rare larger-effect variants that was more important in teosinte but depleted in maize following the domestication bottleneck. Purging associated with the maize domestication bottleneck may have selected against some large effect variants, but polygenic load is harder to purge and overall segregating mutational burden increased in maize compared to teosinte.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. Vignesh ◽  
C. Mahadevaiah ◽  
R. Parimalan ◽  
R. Valarmathi ◽  
S. Dharshini ◽  
...  

AbstractErianthus arundinaceus [Retzius] Jeswiet, a wild relative of sugarcane has a high biomass production potential and a reservoir of many genes for superior agronomic traits and tolerance to biotic and abiotic stresses. A comparative physiological, anatomical and root transcriptome analysis were carried out to identify the salt-responsive genes and metabolic pathways associated with salt-tolerant E. arundinaceus genotype IND99-907 and salinity-sensitive sugarcane genotype Co 97010. IND99-907 recorded growth of young leaves, higher proline content, higher relative water content, intact root anatomical structures and lower Na+/K+, Ca2+/K+ and Mg2+/K+ ratio as compared to the sugarcane genotype Co 97010. We have generated four de novo transcriptome assemblies between stressed and control root samples of IND99-907 and Co 97010. A total of 649 and 501 differentially expressed genes (FDR<0.01) were identified from the stressed and control libraries of IND99-907 and Co 97010 respectively. Genes and pathways related to early stress-responsive signal transduction, hormone signalling, cytoskeleton organization, cellular membrane stabilization, plasma membrane-bound calcium and proton transport, sodium extrusion, secondary metabolite biosynthesis, cellular transporters related to plasma membrane-bound trafficking, nucleobase transporter, clathrin-mediated endocytosis were highly enriched in IND99-907. Whereas in Co 97010, genes related to late stress-responsive signal transduction, electron transport system, senescence, protein degradation and programmed cell death, transport-related genes associated with cellular respiration and mitochondrial respiratory chain, vesicular trafficking, nitrate transporter and fewer secondary metabolite biosynthetic genes were highly enriched. A total of 27 pathways, 24 biological processes, three molecular functions and one cellular component were significantly enriched (FDR≤ 0.05) in IND99-907 as compared to 20 pathways, two biological processes without any significant molecular function and cellular components in Co 97010, indicates the unique and distinct expression pattern of genes and metabolic pathways in both genotypes. The genomic resources developed from this study is useful for sugarcane crop improvement through development of genic SSR markers and genetic engineering approaches.


2021 ◽  
Author(s):  
Benedict Coombes ◽  
John P. Fellers ◽  
Surbhi Grewal ◽  
Rachel Rusholme-Pilcher ◽  
Stella Hubbart-Edwards ◽  
...  

Wheat is a globally vital crop, but its limited genetic variation creates a challenge for breeders aiming to maintain or accelerate agricultural improvements over time. Introducing novel genes and alleles from wheat's wild relatives into the wheat breeding pool via introgression lines is an important component of overcoming this low variation but is limited by poor genomic resolution and limited understanding of the genomic impact of introgression breeding. By sequencing 17 hexaploid wheat/Ambylopyrum muticum introgression lines and the parent lines, we have precisely pinpointed the borders of introgressed segments. We report a genome assembly and annotation of Am. muticum that has facilitated the identification of Am. muticum resistance genes commonly introgressed in lines resistant to stripe rust. Our analysis has identified an abundance of structural disruption and homoeologous pairing across the introgression lines, likely caused by the suppressed Ph1 locus. mRNAseq analysis of six of these introgression lines revealed that introgressed genes tend to be downregulated, shifting the expression balance of triads towards suppression of the introgressed region, with no discernible compensation in the expression of the homoeologous copies. This analysis explores the genomic impact of introgression breeding and provides an affordable way for breeders to better characterise introgression lines and more effectively deploy wild relative variation.


2021 ◽  
Author(s):  
Surbhi Grewal ◽  
Benedict Coombes ◽  
Ryan Joynson ◽  
Anthony Hall ◽  
John Fellers ◽  
...  

Many wild relative species are being used in pre-breeding programmes to increase the genetic diversity of wheat. Genotyping tools such as single nucleotide polymorphism (SNP)-based arrays and molecular markers have been widely used to characterise wheat-wild relative introgression lines. However, due to the polyploid nature of the recipient wheat genome, it is difficult to develop SNP-based KASP markers that are codominant to track the introgressions from the wild species. Previous attempts to develop KASP markers have involved both exome- and PCR-amplicon-based sequencing of the wild species. But chromosome-specific KASPs assays have been hindered by homoeologous SNPs within the wheat genome. This study involved whole genome sequencing of the diploid wheat wild relative Amblyopyrum muticum and development of a SNP discovery pipeline that generated ~38,000 SNPs in single-copy wheat genome sequences. New assays were designed to increase the density of Am. muticum polymorphic KASP markers. With a goal of one marker per 60 Mbp, 335 new KASP assays were validated as functional. Together with assays validated in previous studies, 498 well distributed chromosome-specific markers were used to recharacterize previously genotyped wheat-Am. muticum doubled haploid (DH) introgression lines. The chromosome specific nature of the KASP markers allowed clarification of which wheat chromosomes were involved with recombination events or substituted with Am. muticum chromosomes and the higher density of markers allowed detection of new small introgressions in these DH lines.


2021 ◽  
Author(s):  
Silas Tittes ◽  
Anne Lorant ◽  
Sean McGinty ◽  
John F. Doebley ◽  
James B. Holland ◽  
...  

ABSTRACTWhat is the genetic architecture of local adaptation and what is the geographic scale that it operates over? We investigated patterns of local and convergent adaptation in five sympatric population pairs of traditionally cultivated maize and its wild relative teosinte (Zea mays subsp. parviglumis). We found that signatures of local adaptation based on the inference of adaptive fixations and selective sweeps are frequently exclusive to individual populations, more so in teosinte compared to maize. However, for both maize and teosinte, selective sweeps are frequently shared by several populations, and often between the subspecies. We were further able to infer that selective sweeps were shared among populations most often via migration, though sharing via standing variation was also common. Our analyses suggest that teosinte has been a continued source of beneficial alleles for maize, post domestication, and that maize populations have facilitated adaptation in teosinte by moving beneficial alleles across the landscape. Taken together, out results suggest local adaptation in maize and teosinte has an intermediate geographic scale, one that is larger than individual populations, but smaller than the species range.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1782
Author(s):  
Sourour Ayed ◽  
Imen Bouhaouel ◽  
Afef Othmani ◽  
Filippo Maria Bassi

In Mediterranean regions, the performance of durum wheat (Triticum turgidum L. var. durum Desf.) yield often varies due to significant genotype × environment interaction (GEI); therefore, yield stability is an important consideration in breeding programs. The aim of this research was to explore the GEI pattern and yield stability of 24 promising durum wheat lines, selected by ICARDA in several African countries (seven elites, four commercial varieties, and 13 durum wheat wide crosses, generated by hybridization of elites and Triticum dicoccoides Koern. ex Schweinf., Triticum araraticum Jakubz, and Aegilops speltoides Tausch) against a Tunisian local check variety ‘Salim’. Yield assessment was conducted across six environments under rainfed conditions, at the field station of Kef in a semi-arid region during four cropping seasons (2014–2015, 2015–2016, 2016–2017, and 2017–2018) and in a sub-humid region at the station of Beja during two cropping seasons (2015–2016 and 2018–2019). The analysis of variance showed that the environment is the main source of variation of grain yield (72.05%), followed by the interaction environments × genotypes (25.33%) and genotypes (2.62%). The genotype × genotype by environment model (PC) based on grain yield identified a mega-environment including Kef (2016–2017 and 2017–2018) and Beja (2015–2016 and 2018–2019) and elite line 22 as a widely adapted genotype. Combined analysis, computed using the average grain yield of lines and the yield stability wide adaptation index (AWAI), showed that elite lines 9 and 23 (2.41 and 2.34 t·ha−1, respectively), and wild relative-derived lines, 5, 1, and 10 (2.37, 2.31, and 2.28 t·ha−1, respectively) were more stable and better yielding than the national reference (2.21 t·ha−1). This finding supports the good yield potential of wild relative-derived lines. The five selections are recommended to be developed in multi-environments in several regions of Tunisia, especially in semi-arid area.


Sign in / Sign up

Export Citation Format

Share Document