(C-A) and (G-A) anchored simple sequence repeats (ASSRs) generated polymorphism in soybean, Glycine max (L.) Merr.

1998 ◽  
Vol 96 (8) ◽  
pp. 1086-1096 ◽  
Author(s):  
G. Wang ◽  
R. Mahalingam ◽  
H. T. Knap
Vegetalika ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Puji Lestari ◽  
Rizki Eka Putri ◽  
Innaka Ageng Rineksane ◽  
Etty Handayani ◽  
Kristianto Nugroho ◽  
...  

Karakterisasi aksesi kedelai (Glycine max L. Merr.) dalam koleksi perlu dilakukan berdasarkan marka molekuler untuk mendukung karakter morfologi. Penelitian ini bertujuan untuk menganalisis keragaman genetik aksesi kedelai yang diintroduksi dari daerah subtropis menggunakan marka simple sequence repeats (SSR) yang didukung melalui informasi karakter morfologi. Hasil penelitian menunjukkan bahwa sebanyak 15 SSR berhasil dideteksi polimorfismenya pada 27 aksesi kedelai dari daerah subtropis dengan total 158 alel berukuran antara 100-368 bp dengan kisaran jumlah 4-18 alel per lokus. Rata-rata polymorphism information content (PIC) ditemukan sebesar 0,92 dengan nilai tertinggi 0,96 (SATT463, SATT249, SATT063) dan nilai terendah 0,87 (SATT038). Semua marka SSR memiliki nilai PIC >0,8 yang mengindikasikan sebagai marka sangat informatif, artinya mampu mendiferensiasi antar aksesi dan dapat diaplikasikan dalam mendeteksi keragaman genetik plasma nutfah kedelai lainnya. Keragaman genetik aksesi kedelai terebut sangat tinggi seperti yang direfleksikan oleh rata-rata indeks diversitas gen sebesar 0,93. Analisis klaster dengan marka SSR berhasil membagi 27 aksesi kedelai menjadi dua kelompok utama yang sebagian besar dalam kelompok I (26 aksesi) dan kelompok II khusus aksesi D76-8070. Karakterisasi molekuler dengan SSR tersebut mendukung keragaman yang tinggi karakter morfologi yang memisahkan total aksesi menjadi empat kuadran. Informasi keragaman genetik berdasarkan marka S yang didukung karakter morfologi tersebut dapat menjadi dasar awal seleksi tetua persilangan aksesi dari daerah subtropis untuk pengembangan varietas baru melalui pemuliaan kedelai di iklim tropis Indonesia.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Evi Julianita Harahap ◽  
Rosmayanti Rosmayanti ◽  
Diana Sofia Hanafiah

SSR marker has some merits such as quickness, simplicity, rich polymorphism and stability, thus being widely applied in genetic diversity analysis, molecular map construction and gene mapping. the purpose of this study was to determine polymorpic test and heterozygosity in F4 soybean (Glycine max (L.) Merril) progeni saline resistant characters using SSR (Simple Sequence Repeats) markers. This research was conducted in Biomolecular Laboratory, Socfindo Seed Production Laboratory (SSPL), Kebun Bangun Bandar Village Martebing District Dolok Masihul Regency Serdang Bedagai on December-May 2017. The number of samples were used 44. The five SSR primers (QS080465, QS1101, QS1112, QS100011, and Sat_091) used were specific primers, with a band pattern that was clearly visible around one or two bands. The percentage of polymorphic primers (PLP) of these three populations is high, all populations with a PLP of 100% of the saline resistant character. The effective allele number (Ne) of  7,160 for the progeny population is lower than the number of observed alleles (Na) of 10,000 which means that many progeny individuals are homozygous. The expected heterozygosity (He) value of 0.854 in the progeny population was higher than the observed heterozygosity (Ho) value of 0.027. The overall average observed heterozygosity (Ho) was 0.009 lower than the overall expected heterozygosity (He) of 0.61. This means that each character has a low heterozygosity.Keywords: Progeny F4, soybean, SSR, saline resistant, polymorphic, heterozygosity


Genome ◽  
2004 ◽  
Vol 47 (1) ◽  
pp. 190-198 ◽  
Author(s):  
K K Kato ◽  
R G Palmer

Three lethal-yellow mutants have been identified in soybean (Glycine max (L.) Merr.), and assigned genetic type collection numbers T218H, T225H, and T362H. Previous genetic evaluation of T362H indicated allelism with T218H and T225H and duplicate-factor inheritance. Our objectives were to confirm the inheritance and allelism of T218H and T225H and to molecularly map the locus and (or) loci conditioning the lethal-yellow phenotype. The inheritance of T218H and T225H was 3 green : 1 lethal yellow in their original parental source germplasm of Glycine max 'Illini' and Glycine max 'Lincoln', respectively. In crosses to unrelated germplasm, a 15 green : 1 lethal yellow was observed. Allelism tests indicated that T218H and T225H were allelic. The molecular mapping population was Glycine max 'Minsoy' × T225H and simple sequence repeat (SSR) markers were used. The first locus, designated y18_1, was located on soybean molecular linkage group B2, between SSR markers Satt474 and Satt534, and linked to each by 4.4 and 13.4 cM, respectively. The second locus, designated y18_2, was located on soybean molecular linkage group D2, between SSR markers Satt543 and Sat_001, and linked to each by 2.2 and 4.4 cM, respectively.Key words: duplicate gene, Glycine max, homoeologous genomic segment, genome evolution, lethal-yellow mutant.


Author(s):  
R. W. Yaklich ◽  
E. L. Vigil ◽  
W. P. Wergin

The legume seed coat is the site of sucrose unloading and the metabolism of imported ureides and synthesis of amino acids for the developing embryo. The cell types directly responsible for these functions in the seed coat are not known. We recently described a convex layer of tissue on the inside surface of the soybean (Glycine max L. Merr.) seed coat that was termed “antipit” because it was in direct opposition to the concave pit on the abaxial surface of the cotyledon. Cone cells of the antipit contained numerous hypertrophied Golgi apparatus and laminated rough endoplasmic reticulum common to actively secreting cells. The initial report by Dzikowski (1936) described the morphology of the pit and antipit in G. max and found these structures in only 68 of the 169 seed accessions examined.


Sign in / Sign up

Export Citation Format

Share Document