Detection of specific chromosome reduction in rice somatic hybrids with the A, B, and C genomes by multi-color genomic in situ hybridization

1998 ◽  
Vol 97 (7) ◽  
pp. 1013-1018 ◽  
Author(s):  
R. Shishido ◽  
S. Apisitwanich ◽  
N. Ohmido ◽  
Y. Okinaka ◽  
K. Mori ◽  
...  
Genome ◽  
1999 ◽  
Vol 42 (5) ◽  
pp. 987-992 ◽  
Author(s):  
F Dong ◽  
R G Novy ◽  
J P Helgeson ◽  
J Jiang

Four somatic hybrids derived from a diploid wild species Solanum etuberosum and a diploid tuber-bearing Solanum clone 463-4, together with five BC1 and three BC2 plants, were analyzed by genomic in situ hybridization (GISH). None of the four somatic hybrids had the expected chromosome constitutions, i.e., 24 chromosomes from each fusion parent. Either one chromosome from S. etuberosum or one from the potato parent 463-4 was lost in the hybrids. Three BC1 plants had exactly one set of S. etuberosum chromosomes. The other two BC1 plants either had one extra or one fewer S. etuberosum chromosome, possibly because their somatic hybrid parents had an extra or had lost one S. etuberosum chromosome. The presence of one set, or close to one set, of S. etuberosum chromosomes in all BC1 plants suggests a preferential pairing and segregation of the S. etuberosum chromosomes in the somatic hybrids. Two of the three BC2 plants had 52 chromosomes, deviating significantly from the expected chromosome number of 48. These results suggest poor pairing between S. etuberosum and S. tuberosum chromosomes in the BC1 plants. The present study demonstrates the importance of combining GISH and DNA marker analysis for a thorough characterization of potato germplasm containing chromosomes from different species.Key words: potato germplasm, Solanum etuberosum, molecular cytogenetics.


Genome ◽  
1998 ◽  
Vol 41 (5) ◽  
pp. 691-701 ◽  
Author(s):  
Marina Skarzhinskaya ◽  
Jan Fahleson ◽  
Kristina Glimelius ◽  
Armand Mouras

HortScience ◽  
2002 ◽  
Vol 37 (1) ◽  
pp. 184-186 ◽  
Author(s):  
Young-A Choi ◽  
R. Tao ◽  
K. Yonemori ◽  
A. Sugiura

Multi-color genomic in situ hybridization (MCGISH) was performed for mitotic cells of the somatic hybrids of Diospyros kaki (2n = 6x = 90) and D. glandulosa (2n = 2x = 30). Total DNA of D. kaki and D. glandulosa were isolated and labeled with biotin-16-UTP and digoxigenin (DIG)-11-UTP, respectively. The labeled DNAs were used as probes to differentiate parental chromosomes. The biotin-labeled probe was detected with avidin-rhodamine, and the DIG-labeled probe was detected with anti-DIG-FITC (fluorescein isothiocyanate). Ninety chromosomes from D. kaki that showed reddish-orange and 30 chromosomes from D. glandulosa that showed greenish-yellow were observed under a fluorescence microscope. Some chromosomes showed cross-hybridization with both probes at their terminal or other chromosome regions. These results indicated that MCGISH could be used to analyze genomes of Diospyros species whose chromosomes are small and numerous.


Genome ◽  
1998 ◽  
Vol 41 (5) ◽  
pp. 691-701 ◽  
Author(s):  
Marina Skarzhinskaya ◽  
Jan Fahleson ◽  
Kristina Glimelius ◽  
Armand Mouras

Construction of Brassica napus (2n = 38) and Lesquerella fendleri (2n = 12) karyotypes revealed that B. napus contains 10 pairs of metacentric, 5 pairs of submetacentric, and 4 pairs of subtelocentric chromosomes, while L. fendleri contains 6 pairs of metacentric chromosomes that are, on average, 1.5 times longer than those of B. napus. By analysing the karyotypes and performing genomic in situ hybridization (GISH), the chromosome complements of somatic hybrids produced between Brassica napus (+) Lesquerella fendleri were studied. Protoplasts fused with no pretreatment, symmetric fusions, resulted in hybrids containing L. fendleri chromosomes in numbers varying from 2 chromosomes to 2 chromosome complements. In the asymmetric fusion experiments, in which L. fendleri protoplasts were irradiated before fusion, plants with from 38 to more than 76 chromosomes were obtained. In the hybrids with 38 chromosomes, the presence of L. fendleri chromosomes was not detected by GISH analysis, even though L. fendleri DNA was revealed by Southern blotting. Intra- and inter-genomic recombinations were observed in hybrids from both symmetric and asymmetric fusions. The rearrangements were more prevalent in plants resulting from asymmetric fusions. Modifications of the phenotype and reduced fertility of the hybrid plants were correlated with increased dosages of the L. fendleri genome. At least one genome complement of L. fendleri was required to express its morphological features.Key words: Agrobacterium rhizogenes transformed root cultures, Brassica napus, Lesquerella fendleri, somatic hybrids, chromosome translocation.


Genome ◽  
2004 ◽  
Vol 47 (6) ◽  
pp. 1173-1181 ◽  
Author(s):  
Prem P Jauhar ◽  
M Doğramaci ◽  
T S Peterson

Wild grasses in the tribe Triticeae, some in the primary or secondary gene pool of wheat, are excellent reservoirs of genes for superior agronomic traits, including resistance to various diseases. Thus, the diploid wheatgrasses Thinopyrum bessarabicum (Savul. and Rayss) Á. Löve (2n = 2x = 14; JJ genome) and Lophopyrum elongatum (Host) Á. Löve (2n = 2x = 14; EE genome) are important sources of genes for disease resistance, e.g., Fusarium head blight resistance that may be transferred to wheat. By crossing fertile amphidiploids (2n = 4x = 28; JJEE) developed from F1 hybrids of the 2 diploid species with appropriate genetic stocks of durum wheat, we synthesized trigeneric hybrids (2n = 4x = 28; ABJE) incorporating both the J and E genomes of the grass species with the durum genomes A and B. Trigeneric hybrids with and without the homoeologous-pairing suppressor gene, Ph1, were produced. In the absence of Ph1, the chances of genetic recombination between chromosomes of the 2 useful grass genomes (JE) and those of the durum genomes (AB) would be enhanced. Meiotic chromosome pairing was studied using both conventional staining and fluorescent genomic in situ hybridization (fl-GISH). As expected, the Ph1-intergeneric hybrids showed low chromosome pairing (23.86% of the complement), whereas the trigenerics with ph1b (49.49%) and those with their chromosome 5B replaced by 5D (49.09%) showed much higher pairing. The absence of Ph1 allowed pairing and, hence, genetic recombination between homoeologous chromosomes. Fl-GISH analysis afforded an excellent tool for studying the specificity of chromosome pairing: wheat with grass, wheat with wheat, or grass with grass. In the trigeneric hybrids that lacked chromosome 5B, and hence lacked the Ph1 gene, the wheat–grass pairing was elevated, i.e., 2.6 chiasmata per cell, a welcome feature from the breeding standpoint. Using Langdon 5D(5B) disomic substitution for making trigeneric hybrids should promote homoeologous pairing between durum and grass chromosomes and hence accelerate alien gene transfer into the durum genomes.Key words: alien gene transfer, chiasma (xma) frequency, chromosome pairing, fluorescent genomic in situ hybridization (fl-GISH), homoeologous-pairing regulator, specificity of chromosome pairing, wheatgrass.


Sign in / Sign up

Export Citation Format

Share Document