Cytological characterization of potato - Solanum etuberosum somatic hybrids and their backcross progenies by genomic in situ hybridization

Genome ◽  
1999 ◽  
Vol 42 (5) ◽  
pp. 987-992 ◽  
Author(s):  
F Dong ◽  
R G Novy ◽  
J P Helgeson ◽  
J Jiang

Four somatic hybrids derived from a diploid wild species Solanum etuberosum and a diploid tuber-bearing Solanum clone 463-4, together with five BC1 and three BC2 plants, were analyzed by genomic in situ hybridization (GISH). None of the four somatic hybrids had the expected chromosome constitutions, i.e., 24 chromosomes from each fusion parent. Either one chromosome from S. etuberosum or one from the potato parent 463-4 was lost in the hybrids. Three BC1 plants had exactly one set of S. etuberosum chromosomes. The other two BC1 plants either had one extra or one fewer S. etuberosum chromosome, possibly because their somatic hybrid parents had an extra or had lost one S. etuberosum chromosome. The presence of one set, or close to one set, of S. etuberosum chromosomes in all BC1 plants suggests a preferential pairing and segregation of the S. etuberosum chromosomes in the somatic hybrids. Two of the three BC2 plants had 52 chromosomes, deviating significantly from the expected chromosome number of 48. These results suggest poor pairing between S. etuberosum and S. tuberosum chromosomes in the BC1 plants. The present study demonstrates the importance of combining GISH and DNA marker analysis for a thorough characterization of potato germplasm containing chromosomes from different species.Key words: potato germplasm, Solanum etuberosum, molecular cytogenetics.

Genome ◽  
2000 ◽  
Vol 43 (4) ◽  
pp. 712-719 ◽  
Author(s):  
George Fedak ◽  
Qin Chen ◽  
Robert L. Conner ◽  
André Laroche ◽  
René Petroski ◽  
...  

Genome ◽  
1995 ◽  
Vol 38 (6) ◽  
pp. 1163-1169 ◽  
Author(s):  
Qin Chen ◽  
R. L. Conner ◽  
A. Laroche

Labelled total genomic DNA from four alien species, Thinopyrum ponticum (Host) Beauv. (2n = 70, genomes J1J1J1J2J2), Th. bessarabicum (Savul. &Rayss) Love (2n = 14, genome J), Th. elongatum (Host) Beauv. (2n = 14, genome E), and Haynaldia villosa (L.) Schur. (2n = 14, genome V), were used as probes in combination with blocking wheat DNA for in situ hybridization of the chromosomes of Agrotana, a wheat–alien hybrid (2n = 56) of unknown origin. The results showed that genomic DNA probes from Th. ponticum and Th. bessarabicum both clearly revealed 16 alien and 40 wheat chromosomes in Agrotana, indicating that the J genome present in these two species has a high degree of homology with the alien chromosomes in Agrotana. Biotinylated genomic DNA probe from Th. elongatum identified 10 chromosomes from Agrotana, while some regions of six other chromosomes yielded a weak or no signal. The probe from H. villosa produced no differential labelling of the chromosomes of Agrotana. The genomic formula of Agrotana was designated as AABBDDJJ. We suggest that the alien parent donor species of Agrotana is Th. ponticum rather than Th. bessarabicum. Genomic relationships of the three Thinopyrum species are discussed in relation to the distribution of GISH signals in the chromosomes of Agrotana.Key words: Thinopyrum species, wheat–alien amphiploid, genomic DNA probing, in situ hybridization, molecular cytogenetics.


Genome ◽  
2012 ◽  
Vol 55 (8) ◽  
pp. 591-598 ◽  
Author(s):  
P.A. Tomas ◽  
G.E. González ◽  
G.E. Schrauf ◽  
L. Poggio

The karyotype of Elymus scabrifolius (Döll) J.H. Hunz. (2n = 4x = 28) was investigated by DAPI staining and in situ hybridization. All the accessions studied presented a symmetric and uniform karyotype constituted by 9m+2m–sm+3sm. DAPI stain showed 1–7 conspicuous bands in all the chromosomes and polymorphisms between accessions. FISH experiments carried out with 45S rDNA as probe (pTa71) showed strong hybridization signals on the metacentric SAT-chromosome pair 8; the submetacentric SAT-chromosome pair 13 presented weaker hybridization. FISH using pSc119.2 clone as probe identified five chromosome pairs. Then, the combination of chromosome morphology, DAPI-staining, and FISH enabled the accurate identification of each chromosome pair in E. scabrifolius. Genomic in situ hybridization (GISH) experiments using Hordeum DNA as probe on mitotic metaphases confirmed unequivocally the presence of the H genome in E. scabrifolius, allowing us to observe six uniformly labeled chromosome pairs and two chromosome pairs with only one arm labeled. The remaining six chromosome pairs were weakly labeled. The rehybridization of FISH slides with Hordeum DNA as probe allow us to assign the genomic provenance of most of the chromosomes in the studied accessions. Moreover, intergenomic rearrangement was detected between genome H and the still unknown progenitor genome.


Sign in / Sign up

Export Citation Format

Share Document