solanum etuberosum
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 0)

H-INDEX

10
(FIVE YEARS 0)

Genome ◽  
2015 ◽  
Vol 58 (6) ◽  
pp. 305-313 ◽  
Author(s):  
Jagesh Kumar Tiwari ◽  
Sapna Devi ◽  
S. Sundaresha ◽  
Poonam Chandel ◽  
Nilofer Ali ◽  
...  

Genes involved in photoassimilate partitioning and changes in hormonal balance are important for potato tuberization. In the present study, we investigated gene expression patterns in the tuber-bearing potato somatic hybrid (E1-3) and control non-tuberous wild species Solanum etuberosum (Etb) by microarray. Plants were grown under controlled conditions and leaves were collected at eight tuber developmental stages for microarray analysis. A t-test analysis identified a total of 468 genes (94 up-regulated and 374 down-regulated) that were statistically significant (p ≤ 0.05) and differentially expressed in E1-3 and Etb. Gene Ontology (GO) characterization of the 468 genes revealed that 145 were annotated and 323 were of unknown function. Further, these 145 genes were grouped based on GO biological processes followed by molecular function and (or) PGSC description into 15 gene sets, namely (1) transport, (2) metabolic process, (3) biological process, (4) photosynthesis, (5) oxidation-reduction, (6) transcription, (7) translation, (8) binding, (9) protein phosphorylation, (10) protein folding, (11) ubiquitin-dependent protein catabolic process, (12) RNA processing, (13) negative regulation of protein, (14) methylation, and (15) mitosis. RT-PCR analysis of 10 selected highly significant genes (p ≤ 0.01) confirmed the microarray results. Overall, we show that candidate genes induced in leaves of E1-3 were implicated in tuberization processes such as transport, carbohydrate metabolism, phytohormones, and transcription/translation/binding functions. Hence, our results provide an insight into the candidate genes induced in leaf tissues during tuberization in E1-3.


Genome ◽  
2014 ◽  
Vol 57 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Jagesh K. Tiwari ◽  
Poonam Chandel ◽  
Bir Pal Singh ◽  
Vinay Bhardwaj

Cytoplasm types of the potato somatic hybrids from Solanum tuberosum × Solanum etuberosum were analysed using chloroplast (cp) and mitochondrial (mt) organelle genomes-specific markers. Of the 29 markers (15 cpDNA and 14 mtDNA) amplified in the 26 genotypes, 5 cpDNA (H3, NTCP4, NTCP8, NTCP9, and ALC1/ALC3) and 13 mtDNA markers showed polymorphism. The cluster analysis based on the mtDNA markers detected higher diversity compared with the cpDNA markers. Presence of new mtDNA fragments of the markers, namely, T11-2, Nsm1, pumD, Nsm3, and Nsm4, were observed, while monomorphic loci revealed highly conserved genomic regions in the somatic hybrids. The study revealed that the somatic hybrids had diverse cytoplasm types consisting predominantly of T-, W-, and C-, with a few A- and S-type cp genomes; and α-, β-, and γ-type mt genomes. Somatic hybridization has unique potential to widen the cytoplasm types of the cultivated gene pools from wild species through introgression by breeding methods.


Genome ◽  
1999 ◽  
Vol 42 (5) ◽  
pp. 987-992 ◽  
Author(s):  
F Dong ◽  
R G Novy ◽  
J P Helgeson ◽  
J Jiang

Four somatic hybrids derived from a diploid wild species Solanum etuberosum and a diploid tuber-bearing Solanum clone 463-4, together with five BC1 and three BC2 plants, were analyzed by genomic in situ hybridization (GISH). None of the four somatic hybrids had the expected chromosome constitutions, i.e., 24 chromosomes from each fusion parent. Either one chromosome from S. etuberosum or one from the potato parent 463-4 was lost in the hybrids. Three BC1 plants had exactly one set of S. etuberosum chromosomes. The other two BC1 plants either had one extra or one fewer S. etuberosum chromosome, possibly because their somatic hybrid parents had an extra or had lost one S. etuberosum chromosome. The presence of one set, or close to one set, of S. etuberosum chromosomes in all BC1 plants suggests a preferential pairing and segregation of the S. etuberosum chromosomes in the somatic hybrids. Two of the three BC2 plants had 52 chromosomes, deviating significantly from the expected chromosome number of 48. These results suggest poor pairing between S. etuberosum and S. tuberosum chromosomes in the BC1 plants. The present study demonstrates the importance of combining GISH and DNA marker analysis for a thorough characterization of potato germplasm containing chromosomes from different species.Key words: potato germplasm, Solanum etuberosum, molecular cytogenetics.


Sign in / Sign up

Export Citation Format

Share Document