Mineralogy and trace-element geochemistry of the high-grade iron ores of the Águas Claras Mine and comparison with the Capão Xavier and Tamanduá iron ore deposits, Quadrilátero Ferrífero, Brazil

2007 ◽  
Vol 43 (2) ◽  
pp. 229-254 ◽  
Author(s):  
Carlos Alberto Spier ◽  
Sonia Maria Barros de Oliveira ◽  
Carlos Alberto Rosière ◽  
José Domingos Ardisson
2013 ◽  
Author(s):  
Rosaline Cristina Figueiredo e Silva ◽  
Lydia Maria Lobato ◽  
Carlos Alberto Rosière ◽  
Steffen Hagemann

ESTUDOS PETROGRÁFICOS E GEOQUÍMICOS DOS GIGANTES DEPÓSITOS DE MINÉRIO DE FERRO DA SERRA NORTE, PROVÍNCIA MINERAL DE CARAJÁS, PARÁ, BRASIL. Os depósitos de minério de ferro de Carajás, localizados no sudeste do estado do Pará no Brasil, estão hospedados na sequência metavulcanossedimentar do Grupo Grão Pará, Supergrupo Itacaiúnas. Os protólitos da mineralização de ferro são jaspilitos, soto- e sobrepostos por basaltos, ambos metamorfisados em fácies xisto verde. Os maiores depósitos de minério de ferro da Serra Norte são N1, N4E, N4W, N5E e N5S, estão distribuídos ao longo e estruturalmente controlados pelo flanco norte da dobra Carajás. Minério de alto teor (> 64 % Fe) consiste em minérios compactos e friáveis. O contato basal dos minérios de alto teor é definido por rocha basáltica alterada hidrotermalmente, composta por clorita e hematita microlamelar. Diferentes estágios de alteração hidrotermal afetaram jaspilitos para formar minérios de ferro, da zona de alteração distal, representada pelo estágio cedo-hidrotermal, às zonas de alteração intermediária e proximal, concomitantes com o evento principal de formação de minério de ferro. A zona proximal representa o estágio de alteração avançado (i.e., minério de ferro de alto). Jaspilitos dos depósitos N4W, N5E e N5S e minérios compactos dos depósitos N1 e N4E têm baixo conteúdo ETR, são enriquecidos em REE leves e exibem anomalias positivas de európios (Eu/Eu*> 1), padrão típico de formações ferríferas bandadas arqueanas. O padrão de ETR definido por minérios de N5E é quase horizontal e apresenta aumento em ETR e ausência de anomalia positiva de Eu. O aumento acentuado em ETRL ocorreu durante a formação de magnetita e hematita microlamelar. Já aumento em ETRP e padrão quase horizontal de ETR coincidem com o avanço da martitização formando hematita anédrica, o qual pode ter favorecido o aumento relativo de ETR pesados no fluido residual, resultando em precipitados do estágio avançado de mineralização (formação de hematitas euédrica e tabular). As mudanças mineralógicas, geoquímicas e isotópicas de jaspilitos a minérios de ferro de alto teor sugerem uma origem hidrotermal para minério compacto via interação de fluido magmático reduzido em estágio cedo-hidrotermal, lixiviando sílica e formando magnetita. Este fluido evoluiu para condições mais oxidantes, com avanço da martitização, aumento na concentração de ETR e formação de hematita microlamelar em veios e bordas de martita, a partir de mistura com águas meteóricas modificadas.Palavras-chave: jaspilito, minério de ferro, Carajás, elementos terras raras. ABSTRACT: The Carajás iron ore deposits, located in the southern part of the state of Pará in Brazil, are hosted by the metavolcano-sedimentary sequence of the Grão Pará Group, Itacaiúnas Supergroup. The protoliths to iron mineralization are jaspilites, under- and overlaid by basalts, both greenschist facies metamorphosed. The major Serra Norte N1, N4E, N4W, N5E and N5S iron ore deposits of the Carajás Mineral Province are distributed along, and structurally controlled by, the northern flank of the Carajás fold. High-grade iron mineralization (> 64 % Fe) is made up of hard and soft ores. The basal contact of the high-grade iron ore is defined by a hydrothermally altered basaltic rock mainly composed by chlorite and microplaty hematite. Varying degrees of hydrothermal alteration have affected jaspilites to form iron ores, from distal alteration zone, representing an early alteration stage, to intermediate and proximal alteration zones, synchronous with the main iron-ore forming event. The latter represents an advanced alteration stage (i.e., the high-grade iron ore). Jaspilites from the N4W, N5E and N5S deposits, and hard ores from N1 and N4E have a low REE content, are enriched in light REE and exhibit positive europium anomalies (Eu/Eu*> 1), which is typical of Archean banded iron formations. The REE pattern defined by N5E ores is nearly flat and displays an increase in REE and absence of the positive Eu anomaly. The increase in LREE was accentuated during the formation of magnetite and microplaty hematite, and the advance of martitization to form anhedral hematite, which may have favoured the relative increase of HREE in the residual fluid, resulting in an increase in HREE in advanced-stage precipitates and almost flat REE patterns associated with the advanced stage of mineralization (euhedral and tabular hematite formation). The mineralogical, geochemical and isotopic changes from jaspilites to high-grade iron ores suggests a hydrothermal origin for hard ore via interaction with an early-stage, relatively reduced magmatic fluid, which leached silica and formed magnetite, which evolved to more oxidizing conditions, with the advance of martitization, increase in the REE concentration and microplaty hematite precipitation in veins and martite borders , from interaction with modified meteoric waters.Keywords: jaspilite, iron ore, Carajás, rare earth elements


2021 ◽  
Author(s):  
Sara Raič ◽  
Ferenc Molnár ◽  
Nick Cook ◽  
Hugh O`Brien ◽  
Yann Lahaye

Abstract. Discovering ore deposits is becoming increasingly difficult, and this is particularly true in areas of glaciated terrains. As a new exploration tool for such terrains, we test the vectoring capacities of trace element and sulfur isotope characteristics of pyrite, combined with quantitative tools for whole-rock geochemical datasets. Our target is the Rajapalot gold-cobalt project in northern Finland, where metamorphosed Paleoproterozoic volcanic and-sedimentary rocks of the Peräpohja belt host recently discovered gold prospects, which also have significant cobalt enrichment. The focus is particularly put on a single gold-cobalt prospect, known as Raja, an excellent example of this unusual cobalt-enriched gold deposit, common in the metamorphosed terranes of northern Finland. The major lithologies at Rajapalot comprise variously altered and deformed calcsilicate rocks that alternate with albitized metasedimentary units, mafic volcanic rocks, mica schist and quartzite. Mineralization at Rajapalot prospects is characterized by an older Co-mineralizing event and a younger high-grade Au-mineralization with re-mobilization and re-deposition of Co. Detailed in situ laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a powerful technique that produces the robust trace element and sulfur isotope databases from paragenetically and texturally well-characterized pyrite from the Raja prospect. The results are treated with appropriate log-ratio transformations and used for multivariate statistical data analysis, such as the computation of principal components. Application of these methods revealed that elements such as Co, Ni, Cu, Au, As, Ag, Mo, Bi, Te, Se, Sn, U, Tl and W have high vectoring capacities to discriminate between Co-only and Au-Co zones, as well as between mineralization stages. The systematic pyrite study suggests that homogenous sulfur isotopic characteristics (1.3 ‰ to +5.9 ‰.) and positive loadings of Co, Se, As, Te, Bi and Au onto PC1 are reflective of an early stage of Co-mineralization, while the opposing negative loadings of Mo, Ni, W, Tl, Cu and Ag along PC1 are associated with the Au-mineralizing event. The sulfur isotopic signature of the latter pyrite type is between −1.2 ‰ and +7.4 ‰. Subtle patterns recognized from the whole-rock geochemistry favor an As-Au-Se-Te-W-U signature along the positive axis of PC1 for the localization of high-grade Au-Co-zones, whereas the element group Ni, Cu, Co, Te, Se and As, which has negative loadings onto PC2, will predict Co-only zones. This study shows the efficiency of trace element geochemistry in mineral exploration targeting, which has the capacity to define future targets by  characterizing the metallogenic potential of a host rock, as well as distinguishing various stages of mineralization.  


Sign in / Sign up

Export Citation Format

Share Document