Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry

2018 ◽  
Vol 54 (2) ◽  
pp. 237-262 ◽  
Author(s):  
Matthias E. Bauer ◽  
Mathias Burisch ◽  
Jörg Ostendorf ◽  
Joachim Krause ◽  
Max Frenzel ◽  
...  
2019 ◽  
Vol 98 ◽  
pp. 01017
Author(s):  
Mário A. Gonçalves ◽  
Maja Vuckovic ◽  
Alfonso Fiorelli ◽  
Pedro Barrulas ◽  
José Mirão

Carbonate rocks in sedimentary basins are reactive and can record complex histories of events associated with fluid flow in these basins. These include processes of dolomitization and dedolomitization. In this work we provide some preliminary data where distinct calcite and dolomite generations in the Jurassic Lusitanian Basin were analysed by LA-ICP-MS for trace elements in order to characterize chemical signatures of fluid-mineral interaction. It was observed that different carbonate generations can preserve the range of certain trace metal concentrations, but later calcites have distinctly higher contents in REE, Th and U, and Ba. Dolomites also show distinct chemical signatures but lack of analytical and spatial resolution does not allow quantification of the precursor calcite relicts. However, these processes point to the action of basinal fluids triggered by distinct tectonic episodes and associated volcanic activity.


2019 ◽  
Vol 104 (9) ◽  
pp. 1256-1272 ◽  
Author(s):  
Indrani Mukherjee ◽  
Ross R. Large ◽  
Stuart Bull ◽  
Daniel G. Gregory ◽  
Aleksandr S. Stepanov ◽  
...  

Abstract Redox-sensitive trace elements and sulfur isotope compositions obtained via in situ analyses of sedimentary pyrites from marine black shales are used to track atmosphere-ocean redox conditions between ∼1730 and ∼1360 Ma in the McArthur Basin, northern Australia. Three black shale formations within the basin (Wollogorang Formation 1730 ± 3 Ma, Barney Creek Formation 1640 ± 3 Ma, and Upper Velkerri Formation 1361 ± 21 Ma) display systematic stratigraphic variations in pyrite trace-element compositions obtained using LA-ICP-MS. The concentrations of several trace elements and their ratios, such as Se, Zn, Se/Co, Ni/Co, Zn/Co, Mo/Co, Se/Bi, Zn/Bi, Ni/Bi, increase from the stratigraphically lower Wollogorang Formation to the Upper Velkerri Formation. Cobalt, Bi, Mo, Cu, and Tl show a consistent decrease in abundance while Ni, As, and Pb show no obvious trends. We interpret these trace element trends as a response to the gradual increase of oxygen in the atmosphere-ocean system from ∼1730 to 1360 Ma. Elements more mobile during erosion under rising atmospheric oxygen show an increase up stratigraphy (e.g., Zn, Se), whereas elements that are less mobile show a decrease (e.g., Co, Bi). We also propose the increase of elemental ratios (Se/Co, Ni/Co, Zn/Co, Mo/Co, Ni/Bi, and Zn/Bi) up stratigraphy are strong indicators of atmospheric oxygenation. Sulfur isotopic compositions of marine pyrite (δ34Spyrite) from these formations, obtained using SHRIMP-SI, are highly variable, with the Wollogorang Formation exhibiting less variation (δ34S = –29.4 to +9.5‰; mean –5.03‰) in comparison to the Barney Creek (δ34S = –13.8 to +41.8‰; mean +19.88‰) and Velkerri Formations (δ34S = –14.2 to +52.8‰; mean +26.9‰). We propose that the shift in mean δ34S to heavier values up-section corresponds to increasing deep water oxygenation from ∼1730 to 1360 Ma. Incursion of oxygenated waters possibly caused a decrease in the areal extent of anoxic areas, at the same time, creating a possibly efficient reducing system. A stronger reducing system caused the δ34S of the sedimentary pyrites to become progressively heavier. Interestingly, heavy δ34S in pyrites overlaps with the increase in the concentration of certain trace elements (and their ratios) in sedimentary pyrites (Se, Zn, Se/Co, Ni/Co, Zn/Co, Mo/Co, Ni/Bi, and Zn/Bi). This study concludes that there was a gradual increase of atmospheric oxygen accompanied by ocean oxygenation through the first ∼400 million years of the Boring Billion (1800–1400 Ma) in the McArthur Basin.


2022 ◽  
Author(s):  
S Matte ◽  
M Constantin ◽  
R Stevenson

The Kipawa rare-earth element (REE) deposit is located in the Parautochton zone of the Grenville Province 55 km south of the boundary with the Superior Province. The deposit is part of the Kipawa syenite complex of peralkaline syenites, gneisses, and amphibolites that are intercalated with calc-silicate rocks and marbles overlain by a peralkaline gneissic granite. The REE deposit is principally composed of eudialyte, mosandrite and britholite, and less abundant minerals such as xenotime, monazite or euxenite. The Kipawa Complex outcrops as a series of thin, folded sheet imbricates located between regional metasediments, suggesting a regional tectonic control. Several hypotheses for the origin of the complex have been suggested: crustal contamination of mantle-derived magmas, crustal melting, fluid alteration, metamorphism, and hydrothermal activity. Our objective is to characterize the mineralogical, geochemical, and isotopic composition of the Kipawa complex in order to improve our understanding of the formation and the post-formation processes, and the age of the complex. The complex has been deformed and metamorphosed with evidence of melting-recrystallization textures among REE and Zr rich magmatic and post magmatic minerals. Major and trace element geochemistry obtained by ICP-MS suggest that syenites, granites and monzonite of the complex have within-plate A2 type anorogenic signatures, and our analyses indicate a strong crustal signature based on TIMS whole rock Nd isotopes. We have analyzed zircon grains by SEM, EPMA, ICP-MS and MC-ICP-MS coupled with laser ablation (Lu-Hf). Initial isotopic results also support a strong crustal signature. Taken together, these results suggest that alkaline magmas of the Kipawa complex/deposit could have formed by partial melting of the mantle followed by strong crustal contamination or by melting of metasomatized continental crust. These processes and origins strongly differ compare to most alkaline complexes in the world. Additional TIMS and LA-MC-ICP-MS analyses are planned to investigate whether all lithologies share the same strong crustal signature.


Sign in / Sign up

Export Citation Format

Share Document