scholarly journals Mineralogical and geochemical characterisation of the Kipawa syenite complex, Quebec: implications for rare-earth element deposits

2022 ◽  
Author(s):  
S Matte ◽  
M Constantin ◽  
R Stevenson

The Kipawa rare-earth element (REE) deposit is located in the Parautochton zone of the Grenville Province 55 km south of the boundary with the Superior Province. The deposit is part of the Kipawa syenite complex of peralkaline syenites, gneisses, and amphibolites that are intercalated with calc-silicate rocks and marbles overlain by a peralkaline gneissic granite. The REE deposit is principally composed of eudialyte, mosandrite and britholite, and less abundant minerals such as xenotime, monazite or euxenite. The Kipawa Complex outcrops as a series of thin, folded sheet imbricates located between regional metasediments, suggesting a regional tectonic control. Several hypotheses for the origin of the complex have been suggested: crustal contamination of mantle-derived magmas, crustal melting, fluid alteration, metamorphism, and hydrothermal activity. Our objective is to characterize the mineralogical, geochemical, and isotopic composition of the Kipawa complex in order to improve our understanding of the formation and the post-formation processes, and the age of the complex. The complex has been deformed and metamorphosed with evidence of melting-recrystallization textures among REE and Zr rich magmatic and post magmatic minerals. Major and trace element geochemistry obtained by ICP-MS suggest that syenites, granites and monzonite of the complex have within-plate A2 type anorogenic signatures, and our analyses indicate a strong crustal signature based on TIMS whole rock Nd isotopes. We have analyzed zircon grains by SEM, EPMA, ICP-MS and MC-ICP-MS coupled with laser ablation (Lu-Hf). Initial isotopic results also support a strong crustal signature. Taken together, these results suggest that alkaline magmas of the Kipawa complex/deposit could have formed by partial melting of the mantle followed by strong crustal contamination or by melting of metasomatized continental crust. These processes and origins strongly differ compare to most alkaline complexes in the world. Additional TIMS and LA-MC-ICP-MS analyses are planned to investigate whether all lithologies share the same strong crustal signature.

2010 ◽  
Vol 74 (4) ◽  
pp. 691-713 ◽  
Author(s):  
T. Graupner ◽  
F. Melcher ◽  
H.-E. Gäbler ◽  
M. Sitnikova ◽  
H. Brätz ◽  
...  

AbstractNew data on rare earth element (REE) concentrations and distribution patterns of columbite-tantalite minerals from Ta-ore provinces worldwide are presented. The REE geochemistry was studied by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Five major types of chondrite-normalized REE distribution patterns are defined for columbite-group minerals (CGM) from lithium-caesium-tantalum (LCT) pegmatites and rare-metal granites. Features to discriminate between the types include (1) the shape of the pattern (e.g. flat or concave), (2) calculated ratios between groups of the REE (e.g. heavy REEN/middle REEN), and (3) the presence and intensity of anomalies (e.g. Ce*, Eu*). Four pegmatites in central and southern Africa are used as case studies to discuss application of the types of REE patterns in individual deposits. The REE fractionation during progressive evolution of the melt in a pegmatite body (either Nb → Ta or Fe → Mn fractionation lines, or both) results in smaller heavy REEN/middle REEN ratios whereas replacement of primary CGM by secondary CGM produces modifications in the light REEN patterns and the heavy REEN/middle REEN ratios also. Critical features of REE patterns such as highly variable heavy REEN/middle REEN ratios or striking differences in the appearance of Eu anomalies are discussed considering structural data of the host minerals and the differentiation behaviour of the pegmatitic melt. In general, CGM from each individual Ta-ore province are characterized by a predominance of one type of REE distribution pattern. Consequently, these patterns are suitable for tracing the origin of tantalum ore concentrates (e.g. as a forensic tool).


Geochemistry ◽  
2012 ◽  
Vol 72 (3) ◽  
pp. 245-252 ◽  
Author(s):  
Jian Cao ◽  
Ming Wu ◽  
Yan Chen ◽  
Kai Hu ◽  
Lizeng Bian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document