Lufilian copper–gold mineralization in the Mkushi District, Zambia: regional metallogenic implications

Author(s):  
José Perelló ◽  
Alan Wilson ◽  
John Wilton ◽  
Robert A. Creaser
PROMINE ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 1-11
Author(s):  
Retno Anjarwati ◽  
Arifudin Idrus ◽  
Lucas Donny Setijadji

The regional tectonic conditions of the KSK Contract of Work are located in the mid-Tertiary magmatic arc (Carlile and Mitchell, 1994) which host a number of epithermal gold deposits (eg, Kelian, Indon, Muro) and significant prospects such as Muyup, Masupa Ria, Gunung Mas and Mirah. Copper-gold mineralization in the KSK Contract of Work is associated with a number of intrusions that have occupied the shallow-scale crust at the Mesozoic metamorphic intercellular junction to the south and continuously into the Lower Tertiary sediment toward the water. This intrusion is interpreted to be part of the Oligocene arc of Central Kalimantan (in Carlile and Mitchell 1994) Volcanic rocks and associated volcanoes are older than intrusions, possibly aged Cretaceous and exposed together with all three contacts (Carlile and Mitchell, 1994) some researchers contribute details about the geological and mineralogical background, and some papers for that are published for the Beruang Kanan region and beyond but no one can confirm the genesis type of the Beruang Kanan region The mineralization of the Beruang Kanan area is generally composed by high yields of epithermal sulphide mineralization. with Cu-Au mineralization This high epithermal sulphide deposition coats the upper part of the Cu-Au porphyry precipitate associated with mineralization processes that are generally controlled by the structure


SEG Discovery ◽  
2016 ◽  
pp. 1-20
Author(s):  
Richard H. Sillitoe ◽  
Claudio Burgoa ◽  
David R. Hopper

ABSTRACT Exploration for porphyry copper deposits beneath barren or poorly mineralized, advanced argillic lithocaps is becoming common­place; however, there have been few discoveries except in cases where the copper ± gold ± molybdenum mineralization has been partly exposed, typically as a result of partial lithocap erosion. At Valeriano, in the high Andes of northern Chile, completely concealed Miocene porphyry copper-gold mineralization was recently discovered beneath a lithocap. Here, the results of the staged drilling program that led to the discovery are summarized, with emphasis on the key geologic, alteration, and mineralization features that provided guidance. The final deep drill holes of the 16-hole program cut well-defined advanced argillic and sericitic alteration zones before entering chalcopyrite ± bornite–bearing, potassic-altered porphyry, with grades of 0.7 to 1.2% Cu equiv, at depths of ~1,000 to >1,800 m.


Author(s):  
Yuchuan Chen ◽  
Dequan Liu ◽  
Ruhong Zhou ◽  
Yanling Tang ◽  
Denghong Wang ◽  
...  

2010 ◽  
Vol 105 (7) ◽  
pp. 1271-1299 ◽  
Author(s):  
A. A. Rieger ◽  
R. Marschik ◽  
M. Diaz ◽  
S. Holzl ◽  
M. Chiaradia ◽  
...  

2010 ◽  
Vol 53 (4) ◽  
pp. 475-484 ◽  
Author(s):  
WeiDong Sun ◽  
MingXing Ling ◽  
XiaoYong Yang ◽  
WeiMing Fan ◽  
Xing Ding ◽  
...  

2020 ◽  
Author(s):  
Peter J. Pollard ◽  
Richard Jongens ◽  
Holly Stein ◽  
C. Mark Fanning ◽  
Robert Smillie

Abstract The Ok Tedi copper-gold mine in Western Province, Papua New Guinea, is situated in the western part of the Ok Tedi Complex where monzodiorite to quartz monzonite intrusions are associated with porphyry- and skarn-style copper-gold mineralization. The Pleistocene age of the intrusive rocks and mineralization provides an opportunity to study the longevity of the magmatic and hydrothermal evolution at Ok Tedi through U-Pb dating of zircon and high-precision Re-Os dating of molybdenite. Six main phases of intrusive rocks can be recognized within the mine area, with the sequence of intrusion indicated by contact relationships. Each has been dated by the SHRIMP U-Pb technique with correction for Th-U disequilibrium based on the U and Th content of each sample. In order of intrusion from oldest to youngest these include: Sydney Monzodiorite (1.368 ± 0.045 Ma), Warsaw Monzodiorite (1.269 ± 0.039 Ma), Kalgoorlie Monzodiorite (1.261 ± 0.050 Ma), Ningi Quartz Monzonite Porphyry (QMP)(1.229 ± 0.051 Ma), Bonn Quartz Monzonite (1.219 ± 0.040 Ma), and Fubilan QMP (1.213 ± 0.049 Ma). The intrusions are alkaline, high K to shoshonitic rocks with high Sr/Y ratios typical of Cu-fertile arc magmas. Chondrite-normalized REE patterns have minor or no negative Eu anomalies and downward sloping to listric-shaped HREE patterns typical of arc magmas in which high water contents supress plagioclase fractionation in favor of an evolution by hornblende ± garnet ± titanite fractionation. Cu-Au mineralization at Ok Tedi can be divided into four main stages based on crosscutting relationships: (1) skarn-endoskarn and associated vein-style mineralization in the Darai Limestone, Ieru siltstone, and Sydney Monzodiorite; (2) porphyry-style veins and breccias within the Ningi QMP and older intrusions, and at Siltstone Ridge: (3) porphyry-style veins and breccias in the Fubilan QMP and older intrusions: and (4) skarn-style mineralization in the lower part of the Darai Limestone along the Taranaki thrust. High-precision Re-Os dating of molybdenite has enabled a chronology to be established for the first three stages. Molybdenite from a quartz-mushketovite-epidote-carbonate-pyrite-chalcopyrite-molybdenite vein in clinopyroxene- and garnet-altered Sydney Monzodiorite has an age of 1.3206 ± 0.0020 Ma, and this dates the formation of the Gold Coast and Berlin skarns. Molybdenite from a quartz-pyrite-chalcopyrite-molybdenite vein in the sericite-altered Sydney Monzodiorite yields an age of 1.3166 ± 0.0043 Ma, and a quartz-pyrite-chalcopyrite-molybdenite vein with K-feldspar alteration selvages hosted in Ieru siltstone beneath the Gold Coast skarn has an age of 1.3031 ± 0.0015 Ma. Samples of molybdenite from quartz-sulfide veins from Siltstone Ridge have ages of 1.2116 ± 0.0029 and 1.2078 ± 0.0031 Ma. Molybdenite from a quartz-K-feldspar-pyrite-molybdenite vein, which overprints propylitic alteration in the Sydney Monzodiorite, has an age of 1.2120 ± 0.0024 Ma. These samples date porphyry-style mineralization in and around the Ningi QMP and at Siltstone Ridge. A sample of molybdenite from the matrix of hydrothermal intrusive breccia in the Fubilan QMP has an age of 1.2146 ± 0.0020 Ma, similar to the age of the adjacent Siltstone Ridge mineralization, and is interpreted to have been mechanically incorporated into the breccia during its formation. Several samples have been dated from the Fubilan porphyry system, including molybdenite from the matrix of a hydrothermal intrusive breccia (1.1648 ± 0.0020 Ma) and three samples from veins which postdate the breccias: a vuggy quartz-sulfide vein (1.1532 ± 0.0027 Ma), chalcopyrite-pyrite-molybdenite vein (1.1446 ± 0.0028 Ma), and duplicate analyses of a molybdenite-only vein (1.1326 ± 0.0034 and 1.1297 ± 0.0026 Ma) in agreement at 2σ. Molybdenite from a quartz-K-feldspar-biotite-magnetite-pyrite-chalcopyrite-molybdenite vein in endoskarn-altered Sydney Monzodiorite (beneath the Gold Coast skarn) has an age of 1.1459 ± 0.0012 Ma, and a similar vein without magnetite hosted in Warsaw Monzodiorite has an age of 1.1438 ± 0.0042 Ma, both within error of the chalcopyrite-pyrite-molybdenite vein in Fubilan QMP. Intrusive rocks in the Ok Tedi mine were emplaced over a period of approximately 200,000 years, with Cu-Au mineralization formed in discrete episodes of much shorter duration. The Gold Coast skarn and associated porphyry-style veins in Sydney Monzodiorite and Ieru siltstone formed in 14,000 to 21,000 years (n = 3), the Siltstone Ridge porphyry system in 2,000 to 12,000 years (n = 4), and the Fubilan porphyry system in 31,000 to 40,000 years (n = 6). The Taranaki skarn has not been dated in the mine area due to a lack of molybdenite, but geologic relationships indicate it is younger than the Fubilan QMP.


Sign in / Sign up

Export Citation Format

Share Document