Liver tissue oxygenation as measured by near-infrared spectroscopy in the critically ill child in correlation with central venous oxygen saturation

2002 ◽  
Vol 28 (2) ◽  
pp. 184-189 ◽  
Author(s):  
Gabriele Schulz ◽  
Markus Weiss ◽  
Urs Bauersfeld ◽  
Jan Teller ◽  
Daniel Haensse ◽  
...  
2016 ◽  
Vol 36 (3) ◽  
pp. 12-70 ◽  
Author(s):  
Cathy Mitchell

Hypoperfusion is the most common event preceding the onset of multiple organ dysfunction syndrome during trauma resuscitation. Detecting subtle changes in perfusion is crucial to ensure adequate tissue oxygenation and perfusion. Traditional methods of detecting physiological changes include measurements of blood pressure, heart rate, urine output, serum levels of lactate, mixed venous oxygen saturation, and central venous oxygen saturation. Continuous noninvasive monitoring of tissue oxygen saturation in muscle has the potential to indicate severity of shock, detect occult hypoperfusion, guide resuscitation, and be predictive of the need for interventions to prevent multiple organ dysfunction syndrome. Tissue oxygen saturation is being used in emergency departments, trauma rooms, operating rooms, and emergency medical services. Tissue oxygen saturation technology is just as effective as mixed venous oxygen saturation, central venous oxygen saturation, serum lactate, and Stewart approach with strong ion gap, yet tissue oxygen saturation assessment is also a direct, noninvasive microcirculatory measurement of oxygen saturation.


2016 ◽  
Vol 37 (3) ◽  
pp. 902-913 ◽  
Author(s):  
Thomas Alderliesten ◽  
Jill B De Vis ◽  
Petra MA Lemmers ◽  
Jeroen Hendrikse ◽  
Floris Groenendaal ◽  
...  

Although near-infrared spectroscopy is increasingly being used to monitor cerebral oxygenation in neonates, it has a limited penetration depth. The T2-prepared Blood Imaging of Oxygen Saturation (T2-BIOS) magnetic resonance sequence provides an oxygen saturation estimate on a voxel-by-voxel basis, without needing a respiratory calibration experiment. In 15 neonates, oxygen saturation measured by T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy were compared. In addition, these measures were compared to cerebral blood flow and venous oxygen saturation in the sagittal sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy ( R2 = 0.64, p < 0.001). Strong linear correlations were found between near-infrared spectroscopy oxygen saturation, and magnetic resonance imaging measures of frontal cerebral blood flow, whole brain cerebral blood flow and venous oxygen saturation in the sagittal sinus ( R2 = 0.71, 0.50, 0.65; p < 0.01). The oxygen saturation obtained by T2-prepared blood imaging of oxygen saturation correlated with venous oxygen saturation in the sagittal sinus ( R2 = 0.49, p = 0.023), but no significant correlations could be demonstrated with frontal and whole brain cerebral blood flow. These results suggest that measuring oxygen saturation by T2-prepared blood imaging of oxygen saturation is feasible, even in neonates. Strong correlations between the various methods work as a cross validation for near-infrared spectroscopy and T2-prepared blood imaging of oxygen saturation, confirming the validity of using of these techniques for determining cerebral oxygenation.


2004 ◽  
Vol 31 (1) ◽  
pp. 138-141 ◽  
Author(s):  
Gunnar Naulaers ◽  
Bart Meyns ◽  
Marc Miserez ◽  
Veerle Leunens ◽  
Sabine Van Huffel ◽  
...  

2021 ◽  
pp. 1-9
Author(s):  
Aslinur Sircan-Kucuksayan ◽  
Oktay Eray ◽  
Murat Buyukaksu ◽  
Birce Gumus ◽  
Oguz Dursun ◽  
...  

BACKGROUND: Venous oxygen saturation reflects venous oxygenation status and can be used to assess treatment and prognosis in critically ill patients. A novel method that can measure central venous oxygen saturation (ScvO2) non-invasively may be beneficial and has the potential to change the management routine of critically ill patients. OBJECTIVE: The study aims to evaluate the potential of sublingual venous oxygen saturation (SsvO2) to be used in the estimation of ScvO2. METHODS: We have developed two different approaches to calculate SsvO2. In the first one, near-infrared spectroscopy (NIRS) measurements were performed directly on the sublingual veins. In the second approach, NIRS spectra were acquired from the sublingual tissue apart from the sublingual veins, and arterial oxygen saturation was measured using a pulse oximeter on the fingertip. RESULTS: Twenty-six healthy subjects were included in the study. In the first and second approaches, average SsvO2 values were 75.0% ± 1.8 and 75.8% ± 2.1, respectively. The results of the two different approaches were close to each other and similar to ScvO2 of healthy persons (> 70%). CONCLUSION: Oxygen saturation of sublingual veins has the potential to be used in intensive care units, non-invasively and in real-time, to estimate ScvO2.


Sign in / Sign up

Export Citation Format

Share Document