Thenar oxygen saturation measured by near infrared spectroscopy as a noninvasive predictor of low central venous oxygen saturation in septic patients

2011 ◽  
Vol 2011 ◽  
pp. 85-86
Author(s):  
T. Dorman
2016 ◽  
Vol 37 (3) ◽  
pp. 902-913 ◽  
Author(s):  
Thomas Alderliesten ◽  
Jill B De Vis ◽  
Petra MA Lemmers ◽  
Jeroen Hendrikse ◽  
Floris Groenendaal ◽  
...  

Although near-infrared spectroscopy is increasingly being used to monitor cerebral oxygenation in neonates, it has a limited penetration depth. The T2-prepared Blood Imaging of Oxygen Saturation (T2-BIOS) magnetic resonance sequence provides an oxygen saturation estimate on a voxel-by-voxel basis, without needing a respiratory calibration experiment. In 15 neonates, oxygen saturation measured by T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy were compared. In addition, these measures were compared to cerebral blood flow and venous oxygen saturation in the sagittal sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy ( R2 = 0.64, p < 0.001). Strong linear correlations were found between near-infrared spectroscopy oxygen saturation, and magnetic resonance imaging measures of frontal cerebral blood flow, whole brain cerebral blood flow and venous oxygen saturation in the sagittal sinus ( R2 = 0.71, 0.50, 0.65; p < 0.01). The oxygen saturation obtained by T2-prepared blood imaging of oxygen saturation correlated with venous oxygen saturation in the sagittal sinus ( R2 = 0.49, p = 0.023), but no significant correlations could be demonstrated with frontal and whole brain cerebral blood flow. These results suggest that measuring oxygen saturation by T2-prepared blood imaging of oxygen saturation is feasible, even in neonates. Strong correlations between the various methods work as a cross validation for near-infrared spectroscopy and T2-prepared blood imaging of oxygen saturation, confirming the validity of using of these techniques for determining cerebral oxygenation.


2021 ◽  
pp. 1-9
Author(s):  
Aslinur Sircan-Kucuksayan ◽  
Oktay Eray ◽  
Murat Buyukaksu ◽  
Birce Gumus ◽  
Oguz Dursun ◽  
...  

BACKGROUND: Venous oxygen saturation reflects venous oxygenation status and can be used to assess treatment and prognosis in critically ill patients. A novel method that can measure central venous oxygen saturation (ScvO2) non-invasively may be beneficial and has the potential to change the management routine of critically ill patients. OBJECTIVE: The study aims to evaluate the potential of sublingual venous oxygen saturation (SsvO2) to be used in the estimation of ScvO2. METHODS: We have developed two different approaches to calculate SsvO2. In the first one, near-infrared spectroscopy (NIRS) measurements were performed directly on the sublingual veins. In the second approach, NIRS spectra were acquired from the sublingual tissue apart from the sublingual veins, and arterial oxygen saturation was measured using a pulse oximeter on the fingertip. RESULTS: Twenty-six healthy subjects were included in the study. In the first and second approaches, average SsvO2 values were 75.0% ± 1.8 and 75.8% ± 2.1, respectively. The results of the two different approaches were close to each other and similar to ScvO2 of healthy persons (> 70%). CONCLUSION: Oxygen saturation of sublingual veins has the potential to be used in intensive care units, non-invasively and in real-time, to estimate ScvO2.


1996 ◽  
Vol 80 (4) ◽  
pp. 1345-1350 ◽  
Author(s):  
F. Costes ◽  
J. C. Barthelemy ◽  
L. Feasson ◽  
T. Busso ◽  
A. Geyssant ◽  
...  

Near-infrared spectroscopy (NIRS) is a noninvasive way of measuring muscular oxygenation. We evaluated the relationship between NIRS signal [infrared muscle oxygen saturation (IR-SO2mus)] and the femoral venous oxygen saturation (SfvO2) during cycling exercise. Six healthy subjects performed a 30-min steady-state exercise at 80% maximal oxygen uptake in normoxia and hypoxia (inspired O2 fraction = 0.105). IR-So2mus was recorded continuously throughout the tests with the NIRS probe located on the vastus lateralis. During exercise, blood samples were withdrawn every 5 min from radial artery and femoral vein catheters. In normoxia, IR-So2mus initiated a transient nonsignificant decrease at 5 min, then returned to preexercise level, whereas SfvO2 showed a fast decrease, reaching 18% saturation at 10 min without further change. By contrast, in hypoxia, IR-SO2mus and SfvO2 demonstrated a parallel decrease then stabilized at 10 min. We conclude that IR-SO2mus appears to parallel SfvO2 when both the arterial and venous oxygen contents decrease during steady-state exercise in hypoxia, whereas IR-SO2mus does not follow SfvO2 change in normoxia.


Sign in / Sign up

Export Citation Format

Share Document