scholarly journals Influence of positive end-expiratory pressure (PEEP) on histopathological and bacteriological aspects of pneumonia during low tidal volume mechanical ventilation

2004 ◽  
Vol 30 (12) ◽  
pp. 2263-2270 ◽  
Author(s):  
Pierre Emmanuel Charles ◽  
Laurent Martin ◽  
Manuel Etienne ◽  
Delphine Croisier ◽  
Lionel Piroth ◽  
...  
2021 ◽  
Vol 10 (12) ◽  
pp. 2656
Author(s):  
Alberto Fogagnolo ◽  
Federica Montanaro ◽  
Lou’i Al-Husinat ◽  
Cecilia Turrini ◽  
Michela Rauseo ◽  
...  

Mechanical ventilation (MV) is still necessary in many surgical procedures; nonetheless, intraoperative MV is not free from harmful effects. Protective ventilation strategies, which include the combination of low tidal volume and adequate positive end expiratory pressure (PEEP) levels, are usually adopted to minimize the ventilation-induced lung injury and to avoid post-operative pulmonary complications (PPCs). Even so, volutrauma and atelectrauma may co-exist at different levels of tidal volume and PEEP, and therefore, the physiological response to the MV settings should be monitored in each patient. A personalized perioperative approach is gaining relevance in the field of intraoperative MV; in particular, many efforts have been made to individualize PEEP, giving more emphasis on physiological and functional status to the whole body. In this review, we summarized the latest findings about the optimization of PEEP and intraoperative MV in different surgical settings. Starting from a physiological point of view, we described how to approach the individualized MV and monitor the effects of MV on lung function.


2020 ◽  
Vol 21 (4) ◽  
pp. 327-333
Author(s):  
Ravindranath Tiruvoipati ◽  
Sachin Gupta ◽  
David Pilcher ◽  
Michael Bailey

The use of lower tidal volume ventilation was shown to improve survival in mechanically ventilated patients with acute lung injury. In some patients this strategy may cause hypercapnic acidosis. A significant body of recent clinical data suggest that hypercapnic acidosis is associated with adverse clinical outcomes including increased hospital mortality. We aimed to review the available treatment options that may be used to manage acute hypercapnic acidosis that may be seen with low tidal volume ventilation. The databases of MEDLINE and EMBASE were searched. Studies including animals or tissues were excluded. We also searched bibliographic references of relevant studies, irrespective of study design with the intention of finding relevant studies to be included in this review. The possible options to treat hypercapnia included optimising the use of low tidal volume mechanical ventilation to enhance carbon dioxide elimination. These include techniques to reduce dead space ventilation, and physiological dead space, use of buffers, airway pressure release ventilation and prone positon ventilation. In patients where hypercapnic acidosis could not be managed with lung protective mechanical ventilation, extracorporeal techniques may be used. Newer, minimally invasive low volume venovenous extracorporeal devices are currently being investigated for managing hypercapnia associated with low and ultra-low volume mechanical ventilation.


CHEST Journal ◽  
1978 ◽  
Vol 73 (2) ◽  
pp. 158-162 ◽  
Author(s):  
Peter M. Suter ◽  
H. Barrie Fairley ◽  
Michael D. Isenberg

Sign in / Sign up

Export Citation Format

Share Document