Cell tracking via Structured Prediction and Learning

2017 ◽  
Vol 28 (8) ◽  
pp. 859-874 ◽  
Author(s):  
Wan Jiuqing ◽  
Chen Xu ◽  
Zeng Xianhang
2016 ◽  
Vol 6 (2) ◽  
pp. 199-216
Author(s):  
Safaai Bin Deris ◽  
Nazar Zaki

2021 ◽  
Vol 358 ◽  
pp. 109192
Author(s):  
Yajie Liang ◽  
Liset M. de la Prida

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rachael Mooney ◽  
Wafa Abidi ◽  
Jennifer Batalla-Covello ◽  
Hoi Wa Ngai ◽  
Caitlyn Hyde ◽  
...  

Abstract Background Immortalized, clonal HB1.F3.CD21 human neural stem/progenitor cells (NSCs), loaded with therapeutic cargo prior to intraperitoneal (IP) injection, have been shown to improve the delivery and efficacy of therapeutic agents in pre-clinical models of stage III ovarian cancer. In previous studies, the distribution and efficacy of the NSC-delivered cargo has been examined; however, the fate of the NSCs has not yet been explored. Methods To monitor NSC tropism, we used an unconventional method of quantifying endocytosed gold nanorods to overcome the weaknesses of existing cell-tracking technologies. Results Here, we report efficient tumor tropism of HB1.F3.CD21 NSCs, showing that they primarily distribute to the tumor stroma surrounding individual tumor foci within 3 h after injection, reaching up to 95% of IP metastases without localizing to healthy tissue. Furthermore, we demonstrate that these NSCs are non-tumorigenic and non-immunogenic within the peritoneal setting. Conclusions Their efficient tropism, combined with their promising clinical safety features and potential for cost-effective scale-up, positions this NSC line as a practical, off-the-shelf platform to improve the delivery of a myriad of peritoneal cancer therapeutics.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Łukasz Kiraga ◽  
Paulina Kucharzewska ◽  
Damian Strzemecki ◽  
Tomasz P. Rygiel ◽  
Magdalena Król

Abstract In vivo tracking of administered cells chosen for specific disease treatment may be conducted by diagnostic imaging techniques preceded by cell labeling with special contrast agents. The most commonly used agents are those with radioactive properties, however their use in research is often impossible. This review paper focuses on the essential aspect of cell tracking with the exclusion of radioisotope tracers, therefore we compare application of different types of non-radioactive contrast agents (cell tracers), methods of cell labeling and application of various techniques for cell tracking, which are commonly used in preclinical or clinical studies. We discuss diagnostic imaging methods belonging to three groups: (1) Contrast-enhanced X-ray imaging, (2) Magnetic resonance imaging, and (3) Optical imaging. In addition, we present some interesting data from our own research on tracking immune cell with the use of discussed methods. Finally, we introduce an algorithm which may be useful for researchers planning leukocyte targeting studies, which may help to choose the appropriate cell type, contrast agent and diagnostic technique for particular disease study.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng-Fei Xu ◽  
Ricardo Moraes Borges ◽  
Jonathan Fillatre ◽  
Maraysa de Oliveira-Melo ◽  
Tao Cheng ◽  
...  

AbstractGenerating properly differentiated embryonic structures in vitro from pluripotent stem cells remains a challenge. Here we show that instruction of aggregates of mouse embryonic stem cells with an experimentally engineered morphogen signalling centre, that functions as an organizer, results in the development of embryo-like entities (embryoids). In situ hybridization, immunolabelling, cell tracking and transcriptomic analyses show that these embryoids form the three germ layers through a gastrulation process and that they exhibit a wide range of developmental structures, highly similar to neurula-stage mouse embryos. Embryoids are organized around an axial chordamesoderm, with a dorsal neural plate that displays histological properties similar to the murine embryo neuroepithelium and that folds into a neural tube patterned antero-posteriorly from the posterior midbrain to the tip of the tail. Lateral to the chordamesoderm, embryoids display somitic and intermediate mesoderm, with beating cardiac tissue anteriorly and formation of a vasculature network. Ventrally, embryoids differentiate a primitive gut tube, which is patterned both antero-posteriorly and dorso-ventrally. Altogether, embryoids provide an in vitro model of mammalian embryo that displays extensive development of germ layer derivatives and that promises to be a powerful tool for in vitro studies and disease modelling.


Author(s):  
Young Hwan Chang ◽  
Jeremy Linsley ◽  
Josh Lamstein ◽  
Jaslin Kalra ◽  
Irina Epstein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document