scholarly journals Model theory of monadic predicate logic with the infinity quantifier

Author(s):  
Facundo Carreiro ◽  
Alessandro Facchini ◽  
Yde Venema ◽  
Fabio Zanasi

AbstractThis paper establishes model-theoretic properties of $$\texttt {M} \texttt {E} ^{\infty }$$ M E ∞ , a variation of monadic first-order logic that features the generalised quantifier $$\exists ^\infty $$ ∃ ∞ (‘there are infinitely many’). We will also prove analogous versions of these results in the simpler setting of monadic first-order logic with and without equality ($$\texttt {M} \texttt {E} $$ M E and $$\texttt {M} $$ M , respectively). For each logic $$\texttt {L} \in \{ \texttt {M} , \texttt {M} \texttt {E} , \texttt {M} \texttt {E} ^{\infty }\}$$ L ∈ { M , M E , M E ∞ } we will show the following. We provide syntactically defined fragments of $$\texttt {L} $$ L characterising four different semantic properties of $$\texttt {L} $$ L -sentences: (1) being monotone and (2) (Scott) continuous in a given set of monadic predicates; (3) having truth preserved under taking submodels or (4) being truth invariant under taking quotients. In each case, we produce an effectively defined map that translates an arbitrary sentence $$\varphi $$ φ to a sentence $$\varphi ^\mathsf{p}$$ φ p belonging to the corresponding syntactic fragment, with the property that $$\varphi $$ φ is equivalent to $$\varphi ^\mathsf{p}$$ φ p precisely when it has the associated semantic property. As a corollary of our developments, we obtain that the four semantic properties above are decidable for $$\texttt {L} $$ L -sentences.

Author(s):  
Tim Button ◽  
Sean Walsh

Chapters 6-12 are driven by questions about the ability to pin down mathematical entities and to articulate mathematical concepts. This chapter is driven by similar questions about the ability to pin down the semantic frameworks of language. It transpires that there are not just non-standard models, but non-standard ways of doing model theory itself. In more detail: whilst we normally outline a two-valued semantics which makes sentences True or False in a model, the inference rules for first-order logic are compatible with a four-valued semantics; or a semantics with countably many values; or what-have-you. The appropriate level of generality here is that of a Boolean-valued model, which we introduce. And the plurality of possible semantic values gives rise to perhaps the ‘deepest’ level of indeterminacy questions: How can humans pin down the semantic framework for their languages? We consider three different ways for inferentialists to respond to this question.


1985 ◽  
Vol 50 (3) ◽  
pp. 773-780
Author(s):  
Mitchell Spector

AbstractWe initiate the study of model theory in the absence of the Axiom of Choice, using the Axiom of Determinateness as a powerful substitute. We first show that, in this context, is no more powerful than first-order logic. The emphasis then turns to upward Löwenhein-Skolem theorems; ℵ1 is the Hanf number of first-order logic, of , and of a strong fragment of , The main technical innovation is the development of iterated ultrapowers using infinite supports; this requires an application of infinite-exponent partition relations. All our theorems can be proven from hypotheses weaker than AD.


2002 ◽  
Vol 8 (3) ◽  
pp. 380-403 ◽  
Author(s):  
Eric Rosen

Model theory is concerned mainly, although not exclusively, with infinite structures. In recent years, finite structures have risen to greater prominence, both within the context of mainstream model theory, e.g., in work of Lachlan, Cherlin, Hrushovski, and others, and with the advent of finite model theory, which incorporates elements of classical model theory, combinatorics, and complexity theory. The purpose of this survey is to provide an overview of what might be called the model theory of finite structures. Some topics in finite model theory have strong connections to theoretical computer science, especially descriptive complexity theory (see [26, 46]). In fact, it has been suggested that finite model theory really is, or should be, logic for computer science. These connections with computer science will, however, not be treated here.It is well-known that many classical results of ‘infinite model theory’ fail over the class of finite structures, including the compactness and completeness theorems, as well as many preservation and interpolation theorems (see [35, 26]). The failure of compactness in the finite, in particular, means that the standard proofs of many theorems are no longer valid in this context. At present, there is no known example of a classical theorem that remains true over finite structures, yet must be proved by substantially different methods. It is generally concluded that first-order logic is ‘badly behaved’ over finite structures.From the perspective of expressive power, first-order logic also behaves badly: it is both too weak and too strong. Too weak because many natural properties, such as the size of a structure being even or a graph being connected, cannot be defined by a single sentence. Too strong, because every class of finite structures with a finite signature can be defined by an infinite set of sentences. Even worse, every finite structure is defined up to isomorphism by a single sentence. In fact, it is perhaps because of this last point more than anything else that model theorists have not been very interested in finite structures. Modern model theory is concerned largely with complete first-order theories, which are completely trivial here.


2004 ◽  
Vol 10 (1) ◽  
pp. 37-53 ◽  
Author(s):  
Jouko Väänänen

§1. Introduction. After the pioneering work of Mostowski [29] and Lindström [23] it was Jon Barwise's papers [2] and [3] that brought abstract model theory and generalized quantifiers to the attention of logicians in the early seventies. These papers were greeted with enthusiasm at the prospect that model theory could be developed by introducing a multitude of extensions of first order logic, and by proving abstract results about relationships holding between properties of these logics. Examples of such properties areκ-compactness. Any set of sentences of cardinality ≤ κ, every finite subset of which has a model, has itself a model. Löwenheim-Skolem Theorem down to κ. If a sentence of the logic has a model, it has a model of cardinality at most κ. Interpolation Property. If ϕ and ψ are sentences such that ⊨ ϕ → Ψ, then there is θ such that ⊨ ϕ → θ, ⊨ θ → Ψ and the vocabulary of θ is the intersection of the vocabularies of ϕ and Ψ.Lindstrom's famous theorem characterized first order logic as the maximal ℵ0-compact logic with Downward Löwenheim-Skolem Theorem down to ℵ0. With his new concept of absolute logics Barwise was able to get similar characterizations of infinitary languages Lκω. But hopes were quickly frustrated by difficulties arising left and right, and other areas of model theory came into focus, mainly stability theory. No new characterizations of logics comparable to the early characterization of first order logic given by Lindström and of infinitary logic by Barwise emerged. What was first called soft model theory turned out to be as hard as hard model theory.


1996 ◽  
Vol 61 (3) ◽  
pp. 843-872 ◽  
Author(s):  
Silvio Ghilardi ◽  
Giancarlo Meloni

AbstractIn this paper we study the logic of relational and partial variable sets, seen as a generalization of set-valued presheaves, allowing transition functions to be arbitrary relations or arbitrary partial functions. We find that such a logic is the usual intuitionistic and co-intuitionistic first order logic without Beck and Frobenius conditions relative to quantifiers along arbitrary terms. The important case of partial variable sets is axiomatizable by means of the substitutivity schema for equality. Furthermore, completeness, incompleteness and independence results are obtained for different kinds of Beck and Frobenius conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jie Zhang ◽  
Danwen Mao ◽  
Yong Guan

Theorem proving is an important approach in formal verification. Higher-order logic is a form of predicate logic that is distinguished from first-order logic by additional quantifiers and stronger semantics. Higher-order logic is more expressive. This paper presents the formalization of the linear space theory in HOL4. A set of properties is characterized in HOL4. This result is used to build the underpinnings for the application of higher-order logic in a wider spectrum of engineering applications.


1979 ◽  
Vol 44 (4) ◽  
pp. 549-558
Author(s):  
Carl F. Morgenstern

In this paper we indicate how compact languages containing the Magidor-Malitz quantifiers Qκn in different cardinalities can be amalgamated to yield more expressive, compact languages.The language Lκ<ω, originally introduced by Magidor and Malitz [9], is a natural extension of the language L(Q) introduced by Mostowski and investigated by Fuhrken [6], [7], Keisler [8] and Vaught [13]. Intuitively, Lκ<ω is first-order logic together with quantifiers Qκn (n ∈ ω) binding n free variables which express “there is a set X of cardinality κ such than any n distinct elements of X satisfy …”, or in other words, iff the relation on determined by φ contains an n-cube of cardinality κ. With these languages one can express a variety of combinatorial statements of the type considered by Erdös and his colleagues, as well as concepts in universal algebra which are beyond the scope of first-order logic. The model theory of Lκ<ω has been further developed by Badger [1], Magidor and Malitz [10] and Shelah [12].We refer to a language as being < κ compact if, given any set of sentences Σ of the language, if Σ is finitely satisfiable and ∣Σ∣ < κ, then Σ has a model. The phrase countably compact is used in place of <ℵ1 compact.


1985 ◽  
Vol 50 (4) ◽  
pp. 865-873
Author(s):  
H. Andréka ◽  
I. Németi

The theory of cylindric algebras (CA's) is the algebraic theory of first order logics. Several ideas about logic are easier to formulate in the frame of CA-theory. Such are e.g. some concepts of abstract model theory (cf. [1] and [10]–[12]) as well as ideas about relationships between several axiomatic theories of different similarity types (cf. [4] and [10]). In contrast with the relationship between Boolean algebras and classical propositional logic, CA's correspond not only to classical first order logic but also to several other ones. Hence CA-theoretic results contain more information than their counterparts in first order logic. For more about this see [1], [3], [5], [9], [10] and [12].Here we shall use the notation and concepts of the monographs Henkin-Monk-Tarski [7] and [8]. ω denotes the set of natural numbers. CAα denotes the class of all cylindric algebras of dimension α; by “a CAα” we shall understand an element of the class CAα. The class Dcα ⊆ CAα was defined in [7]. Note that Dcα = 0 for α ∈ ω. The classes Wsα, and Csα were defined in 1.1.1 of [8], p. 4. They are called the classes of all weak cylindric set algebras, regular cylindric set algebras and cylindric set algebras respectively. It is proved in [8] (I.7.13, I.1.9) that ⊆ CAα. (These inclusions are proper by 7.3.7, 1.4.3 and 1.5.3 of [8].)It was proved in 2.3.22 and 2.3.23 of [7] that every simple, finitely generated Dcα is generated by a single element. This is the algebraic counterpart of a property of first order logics (cf. 2.3.23 of [7]). The question arose: for which simple CAα's does “finitely generated” imply “generated by a single element” (see p. 291 and Problem 2.3 in [7]). In terms of abstract model theory this amounts to asking the question: For which logics does the property described in 2.3.23 of [7] hold? This property is roughly the following. In any maximal theory any finite set of concepts is definable in terms of a single concept. The connection with CA-theory is that maximal theories correspond to simple CA's (the elements of which are the concepts of the original logic) and definability corresponds to generation.


2013 ◽  
Vol 19 (4) ◽  
pp. 433-472 ◽  
Author(s):  
Georg Schiemer ◽  
Erich H. Reck

AbstractIn historical discussions of twentieth-century logic, it is typically assumed that model theory emerged within the tradition that adopted first-order logic as the standard framework. Work within the type-theoretic tradition, in the style of Principia Mathematica, tends to be downplayed or ignored in this connection. Indeed, the shift from type theory to first-order logic is sometimes seen as involving a radical break that first made possible the rise of modern model theory. While comparing several early attempts to develop the semantics of axiomatic theories in the 1930s, by two proponents of the type-theoretic tradition (Carnap and Tarski) and two proponents of the first-order tradition (Gödel and Hilbert), we argue that, instead, the move from type theory to first-order logic is better understood as a gradual transformation, and further, that the contributions to semantics made in the type-theoretic tradition should be seen as central to the evolution of model theory.


Sign in / Sign up

Export Citation Format

Share Document