scholarly journals Multi-objective aerodynamic optimization of high-speed train heads based on the PDE parametric modeling

Author(s):  
Shuangbu Wang ◽  
Ruibin Wang ◽  
Yu Xia ◽  
Zhenye Sun ◽  
Lihua You ◽  
...  

AbstractWith the increasing running speed, the aerodynamic issues of high-speed trains are being raised and impact the running stability and energy efficiency. The optimization design of the head shape is significantly important in improving the aerodynamic performance of high-speed trains. Existing aerodynamic optimization methods are limited by the parametric modeling methods of train heads which are unable to accurately and completely parameterize both global shapes and local details. Due to this reason, they cannot optimize both global and local shapes of train heads. In order to tackle this problem, we propose a novel multi-objective aerodynamic optimization method of high-speed train heads based on the partial differential equation (PDE) parametric modeling. With this method, the half of a train head is parameterized with 17 PDE surface patches which describe global shapes and local details and keep the surface smooth. We take the aerodynamic drag and lift as optimization objectives; divide the optimization design process into two stages: global optimization and local optimization; and develop global and local optimization methods, respectively. In the first stage, the non-dominated sorting genetic algorithm (NSGA-II) is adopted to obtain the framework of the train head with an optimized global shape. In the second stage, Latin hypercube sampling (LHS) is applied in the local shape optimization of the PDE surface patches determined by the optimized framework to improve local details. The effectiveness of our proposed method is demonstrated by better aerodynamic performance achieved from the optimization solutions in global and local optimization stages in comparison with the original high-speed train head.

2017 ◽  
Vol 18 (11) ◽  
pp. 841-854 ◽  
Author(s):  
Liang Zhang ◽  
Ji-ye Zhang ◽  
Tian Li ◽  
Ya-dong Zhang

Author(s):  
Liang Zhang ◽  
Jiye Zhang ◽  
Tian Li ◽  
Yadong Zhang

In this work, a multiobjective aerodynamic optimization of a high-speed train head was performed to improve the aerodynamic performance of the high-speed train running on an embankment under crosswinds. Seven optimization design variables were selected to control five regions on the train head. The total aerodynamic drag force, aerodynamic lift force, and aerodynamic side force of the head coach were set as the optimization objectives. The optimal Latin hypercube sampling method was used to obtain the values of the design variables of the sample points. The high-speed train head was deformed using the free-form deformation approach through which the mesh morphing was performed without remodeling and re-meshing. Then, the aerodynamic performances of the high-speed trains at the sample points were calculated using the computational fluid dynamics method. A Kriging surrogate model between the design variables and their optimization objectives was constructed. Then, the multiobjective aerodynamic optimization of the high-speed train head was performed using multiobjective genetic algorithms based on the Kriging model. Based on the results of the sample points, the relationships between the optimization design variables and the optimization objectives were analyzed, and the contributions of the primary factors to the optimization objectives were obtained. After optimization, a series of Pareto-optimal head shapes were obtained. The steady and unsteady aerodynamic performances of the train with an optimal head, which was selected from the Pareto-optimal head shapes, were compared with those of the original train.


2021 ◽  
Vol 9 (6) ◽  
pp. 581
Author(s):  
Hongrae Park ◽  
Sungjun Jung

A cost-effective mooring system design has been emphasized for traditional offshore industry applications and in the design of floating offshore wind turbines. The industry consensus regarding mooring system design is mainly inhibited by previous project experience. The design of the mooring system also requires a significant number of design cycles. To take aim at these challenges, this paper studies the application of an optimization algorithm to the Floating Production Storage and Offloading (FPSO) mooring system design with an internal turret system at deep-water locations. The goal is to minimize mooring system costs by satisfying constraints, and an objective function is defined as the minimum weight of the mooring system. Anchor loads, a floating body offset and mooring line tensions are defined as constraints. In the process of optimization, the mooring system is analyzed in terms of the frequency domain and time domain, and global and local optimization algorithms are also deployed towards reaching the optimum solution. Three cases are studied with the same initial conditions. The global and local optimization algorithms successfully find a feasible mooring system by reducing the mooring system cost by up to 52%.


2013 ◽  
Vol 745-746 ◽  
pp. 197-202 ◽  
Author(s):  
Chang Qing Ye ◽  
Zi Gang Deng ◽  
Jia Su Wang

t was theoretically and experimentally proved that High Temperature Superconducting (HTS) Maglev had huge potential employment in rail transportation and high speed launch system. This had attracted great research interests in practical engineering. The optimization design was one of the most important works in the application of the HTS Maglev. As the NdFeB permanent magnet and HTS materials prices increased constantly, the design optimization of the permanent guideway (PMG) of HTS maglev became one of the indispensable works to decrease the cost of the application. This paper first reviewed four types of PMGs used by the HTS Maglev, then disucssed their structures and magnetic fields. Finally, the optimization methods of these four PMGs were compared. It was suggested that with better optimization methods, the levitation performance within a limit cost got better. That would be helpful to the future numerical optimization of the PMG of the HTS maglev.


Sign in / Sign up

Export Citation Format

Share Document